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Abstract. DLV is one of the most successful and widely used answer
set programming (ASP) systems. It supports a powerful language ex-
tending Disjunctive Datalog with many expressive constructs, including
aggregates, strong and weak constraints, functions, lists, and sets. The
system provides database connectivity offering a simple way for power-
ful reasoning on top of relational databases. In this paper, we provide
an ample overview of the DLV system. We illustrate its input language
and give indications on how to use it for representing knowledge. We
also provide a panorama on the system architecture and the main opti-
mizations it incorporates. We then focus on DLVDB , an extension of the
basic system which allows for tight coupling with traditional database
systems. Finally, we report on a number industrial applications which
rely on DLV.

1 Introduction

In this paper, we provide an overview of the disjunctive datalog system DLV

[26]. The DLV project has been active for more than fourteen years, and has
led to the development and continuous enhancement of the DLV system. DLV

is widely used by researchers all over the world, and has stimulated quite some
interest also in industry (see Section 6).

The key reasons for the success of DLV can be summarized as follows:
Advanced knowledge modeling capabilities. DLV provides support for
declarative problem solving in several respects:

– High expressiveness of its knowledge representation language, extending dis-
junctive datalog with many expressive constructs, including aggregates [17],
weak constraints [4], functions, lists, and sets [7]. These constructs not only
increase the expressiveness of the language; they also improve its knowledge
modeling power, enhancing DLV’s usability in real-world contexts.

– Full declarativeness: ordering of rules and subgoals is immaterial, the com-
putation is sound and complete, and its termination is guaranteed.

– Front-ends for dealing with specific applications.

⋆ This research has been partly supported by Regione Calabria and EU under POR
Calabria FESR 2007-2013 within the PIA project of DLVSYSTEM s.r.l., and by
MIUR under the PRIN project LoDeN.



Solid Implementation. Much effort has been spent on sophisticated algo-
rithms and techniques for improving the performance (see Sections 4.1 and 5),
including

– Database optimization techniques: magic sets [10, 1], indexing and join or-
dering methods [25].

– Search optimization techniques: heuristics [18, 28], backjumping techniques [34,
31], pruning operators [8, 16].

– Parallel evaluation [9, 30].
– Evaluation in mass-memory [40].

Interoperability. A number of mechanisms have been implemented to allow
DLV to interact with external systems:

– Interoperability with relational DBMSs: ODBC interface and DLVDB [40].
– Interoperability with Semantic Web reasoners: DLVHEX [14].
– Calling external (C++) functions from DLV programs: DLVEX [6].
– Calling DLV from Java programs: Java Wrapper [33].

In the following, we introduce the language constructs of DLV by examples,
provide some use-cases of how knowledge can be represented in the DLV lan-
guage. Subsequently, we provide an overview of the architecture and techniques
of DLV, and we then focus on DLV

DB – DLV version working (mostly) in
mass-memory. Finally, we provide information on industrial products that rely
on DLV.

2 The language of DLV

In this section, we describe the language of the DLV system by examples, pro-
viding the intuitive meaning of the main constructs. For further details and the
formal definition, we refer to [26, 7, 17]. We first introduce the basic language,
which is based on the founding work by Gelfond and Lifschitz [20] and then we
illustrate a number of extensions including aggregates [17], weak constraints [4],
complex terms [7], queries and database interoperability constructs [40].

Basic Language. The main construct in the DLV language is a rule, an expres-
sion of the form Head :-Body., where Body is a conjunction of literals and Head

is a disjunction of atoms. Informally, a rule can be read as follows: “if Body is
true then Head is true”. A rule without a body is called a fact, since it models
an unconditional truth (for simplicity :- is omitted); whereas a rule with an
empty head, called strong constraint, is used to model a condition that must be
false in any possible solution. A set of rules is called program. The semantics of
a program is given by its answer sets [20]. A program can be used to model a
problem to be solved: the problem’s solutions correspond to the answer sets of
the program (which are computed by DLV). Therefore, a program may have no
answer set (if the problem has no solution), one (if the problem has a unique
solution) or several (if the problem has more than one possible solutions).
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As an example consider the problem of automatically creating an assess-
ment test from a given database of questions where each question is identified
by a unique string, covers a particular topic, and requires an estimated time
to be answered. The input data about questions can be represented by means
of a set of facts of type question(q, topic, time); in addition, facts of the form
relatedTopic(topic) specify the topics related to the subject of the test.

For instance, consider the case in which only four questions are given, repre-
sented by facts: question(q1, computerscience, 8), question(q2, computerscience, 15),
question(q3,mathematics, 15), and question(q4,mathematics, 25). Moreover, sup-
pose that computer science is the only topic to be covered by the test, therefore
relatedTopic(computerscience) is also part of the input facts. The program con-
sisting only of these facts has one answer set A1 containing exactly the five
facts.

Assessment creation amounts to selecting a set of questions from the database,
according to a given specification. To single out questions related to the subject
of the test, one can write the rule:

relatedQuestion(Q) :- question(Q,Topic, T ime), relatedTopic(Topic).

that can be read: “Q is a question related to the test if Q has a topic related to
some of the subjects that have to be assessed”. Adding this rule to the input facts
reported earlier yields one answer setA2 = A1∪{relatedQuestion(q1), relatedQuestion(q2)}.

For determining all the possible subsets of related questions the following
disjunctive rule can be used:

inTest(Q) v discard(Q) :- relatedQuestion(Q).

Intuitively, this rule can be read as: “if Q identifies a related question, then
either Q is taken in the test or Q is discarded.” This rule has the effect of
associating each possible choice of related questions with an answer set of the
program. Indeed, the answer sets of the program P consisting of the above two
rules and the input facts are:

A3 = A2 ∪ {discard(q1), discard(q2)}, A4 = A2 ∪ {inTest(q1), discard(q2)},
A5 = A2 ∪ {discard(q1), inTest(q2)}, A5 = A2 ∪ {inTest(q1), inTest(q2)}

corresponding to the four possible choices of questions {}, {q1}, {q2}, {q1, q2}.
Note that the answer sets are minimal with respect to subset inclusion. Indeed,
for each question Q there is no answer set in which both inTest(Q) and discard(Q)

appear.
At this point, some strong constraints can be used to single out some solutions

respecting a number of specification requirements. For instance, suppose we are
interested in tests containing only questions requiring less than 10 minutes to
be answered. The following constraint models this requirement:

:- inTest(Q), question(Q,Topic, T ime), T ime >= 10.

The program obtained by adding this constraint to P has only two answer sets
A3 and A4.
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Aggregate Functions. More involved properties requiring operations on sets of
values can be expressed by aggregates, a DLV construct similar to aggregation
in the SQL language. DLV supports five aggregate functions, namely #sum,
#count, #times, #max, #min.

In our running example we might want to restrict the included questions to
be solvable in an estimated time of less than 60 minutes. This can be achieved
by the following strong constraint:

:- not#sum{T ime,Q : inTest(Q), question(Q,Topic, T ime)} < 60.

The aggregate sums up the estimated solution times of all questions in the test,
and the constraint will eliminate all scenarios in which this sum is not less than
60.

Optimization Constructs. The DLV language also allows for specifying opti-
mization problems (i.e. problems where some goal function must be minimized
or maximized). This can be achieved by using weak constraints. From a syntac-
tic point of view, a weak constraint is like a strong one where the implication
symbol :- is replaced by :∼. Contrary to strong constraints, weak constraints
allow for expressing conditions that should be satisfied, but not necessarily have
to be.

The informal meaning of a weak constraint :∼ B is “try to falsify B”, or
“B should preferably be false”. Additionally, a weight and a priority level for
the weak constraint may be specified enclosed in square brackets (by means of
positive integers or variables). The answer sets minimize the sum of weights
of the violated (unsatisfied) weak constraints in the highest priority level and,
among them, those which minimize the sum of weights of the violated weak
constraints in the next lower level, and so on.

As an example, if we want to prefer quick-to-answer questions in tests, the
following weak constraint represent this desideratum.

:∼ inTest(Q), question(Q,Topic, T ime). [T ime : 1]

Intuitively, each question in the test increases the total weight of the solution
by its estimated solution time. Thus solutions where the total weight is minimal
are preferred.

Complex Terms. The DLV language allows for the use of complex terms. In
particular, it supports function symbols, lists, and sets. Prolog-like syntax is
allowed for both function symbols and lists, while sets are explicitly represented
by listing the elements in brackets.

As an example, we enrich the question database for allowing two types of
questions, open and multiple choice. Input questions are now represented by
facts like the following

question(q1,math, open(text), 10).
question(q2, physics,multiplechoice(text, {c1, c2, c3}, {w1, w2, w3}), 3).

where function symbols open and multiplechoice are used for representing the
two different types of questions. In particular, open is a unary function whose
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only parameter represents the text of the question, while multiplechoice has three
parameters, the text of the question, a set containing correct answers and another
set of wrong answers.

The use of sets allows for modeling multi-valued attributes, while function
symbols can be used for modeling “semi-structured” information.

Handling complex terms is facilitated by a number of built-in predicates.
For instance, the following rule uses the #member built-in for selecting correct
answers given by a student in the test.

correctAnswer(Student,QID,Ans) :- inTest(QID), answer(Student,QID,Ans),
question(QID, To,multiplechoice(Tx,Cs,Ws), T i),#member(Ans,Cs).

Queries. The DLV language offers the possibility to express conjunctive queries.
From a syntactic point of view, a query in DLV is a conjunction of literals fol-
lowed by a question mark. Since aDLV program may have more than one answer
set, there are two different reasoning modes, brave and cautious, to compute a
query answer. In the brave (resp. cautious) mode, a query answer is true if the
corresponding conjunction is true in some (resp. all) answer sets.

For instance, the answers to the following simple query are the questions
having as topic computerscience that are contained in some (resp. all) answer
sets of the program when brave (resp.cautious) reasoning is used.

inTest(Q), question(Q, computerscience, T )?

Database Interoperability. TheDLV system supports interoperability with databases
by means of #import/#export commands for importing and exporting relations
from/to a DBMS. The #import command reads tuples from a specified table of
a relational database and stores them as facts with a predicate name provided
by the user.

In our example, questions can be retrieved from a database by specifying in
the program the following directive.

#import(questionDB, “user”, “passwd”, “SELECT ∗ FROM question”, question).

where questionDB is the name of the database, “user” and “passwd” are the
data for the user authentication, “SELECT ∗FROM question” is an SQL query
that constructs the table that will be imported and question is the predicate
name which will be used for constructing the new facts.

In a similar way the #export command allows for exporting the extension of
a predicate in an answer set to a database.

3 Knowledge Representation

In this section, we illustrate the usage of DLV as a tool for knowledge representa-
tion and reasoning. We consider a number of problems, from classical deductive
database applications to search and optimization problems, and show how the
language of DLV can be used to encode them in a highly declarative fashion.
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3.1 Deductive Databases

We next present two problems motivated by classical deductive database appli-
cations, namely Same Generation and Simple Paths. For the first one, we provide
an encoding consisting of positive datalog rules, while we encode the second one
by using complex terms (lists).

Same Generation. Given a parent-child relationship (an acyclic directed graph),
we want to find all pairs of persons belonging to the same generation. Two
persons are of the same generation, if either (i) they are siblings, or (ii) they are
children of two persons of the same generation.

Suppose that the input is provided by facts like parent(thomas, joseph) stating
that thomas is a parent of joseph. Then, this problem can be encoded by the
following program, which computes a relation samegeneration(X,Y ) containing
all facts such that X is of the same generation as Y :

samegeneration(X,Y ) :- parent(P,X), parent(P, Y ).

samegeneration(X,Y ) :- parent(P1, X), parent(P2, Y ),
samegeneration(P1, P2).

Simple Paths. Given a directed graph, a simple path is a sequence of nodes, each
one appearing exactly once, such that from each one (but the last) there is an
edge to the next in the sequence.

The following program exploits complex terms for deriving all simple paths
for a directed graph, starting from a given edge relation:

path([X,Y ]) :- edge(X,Y ).
path([X|[Y |W ]]) :- edge(X,Y ), path([Y |W ]), not #member(X, [Y |W ]).

The first rule builds a simple path as a list of two nodes directly connected
by an edge. The second rule constructs a new path adding an element to the
list representing an existing path. The new element will be added only if there
is an edge connecting it to the head of an already existing path. The built-in
predicate #member allows to avoid the insertion of an element that is already
included in the list; without this check, the construction would never terminate
in the presence of circular paths (note that, by default, DLV disallow programs
which might not terminate [7]).

3.2 Search Problems

Here we illustrate two different usages of the DLV language for solving search
problems. On the one hand we consider the Seating problem for showing how
a search problem can be encoded in a DLV program whose answer sets corre-
spond to the problem solutions. On the other hand, we consider a problem of
number and graph theory, namely Ramsey Numbers, for showing how to build
a DLV program whose answer sets witness that a property does not hold, i.e.,
the property at hand holds if and only if the DLV program has no answer set.
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Seating. Consider the problem of generating a seating arrangement for k guests,
with m tables and n chairs per table. Guests who like each other should sit at
the same table; guests who dislike each other should sit at different tables.

Suppose that the number of chairs per table is specified by nChairs(X)
and that person(P ) and table(T ) represent the guests and the available tables,
respectively. Then, we can generate a seating arrangement by the following pro-
gram:

at(P, T ) vnot at(P, T ) :- person(P ), table(T ).
:- table(T ), nChairs(C), not #count{P : at(P, T )} ≤ C.
:- person(P ), not #count{T : at(P, T )} = 1.
:- like(P1, P2), at(P1, T ), not at(P2, T ).
:- dislike(P1, P2), at(P1, T ), at(P2, T ).

The disjunctive rule guesses whether person P sits at table T or not, thus
generating all possible assignments of persons to tables (even those where a
person is not assigned to any table or it is assigned to more than one). The strong
constraints discard assignments that do not respect the problem specification.
In particular the first constraint, for each table T , counts the number of persons
assigned to T and ensures that it does not exceed the number of chairs per
table, whereas the second one, imposes that each person is seated at precisely
one table. Finally, the last two constraints ensure that persons who like each
other are seated at the same table and persons who dislike each other are not.

Ramsey Numbers The Ramsey number R(k,m) is the least integer n such that,
no matter how we color the arcs of the complete undirected graph (clique) with
n nodes using two colors, say red and blue, there is a red clique with k nodes (a
red k-clique) or a blue clique with m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [32]. We
next show a program P that allows for deciding whether a given integer n is not
the Ramsey Number R(3, 4). By varying the input number n, we can determine
R(3, 4), as described below. Let F be the collection of facts for input predicate
arc encoding a complete graph with n nodes. P is the following program:

blue(X,Y ) v red(X,Y ) :- arc(X,Y ).

:- red(X,Y ), red(X,Z), red(Y, Z).

:- blue(X,Y ), blue(X,Z), blue(Y, Z),
blue(X,W ), blue(Y,W ), blue(Z,W ).

Intuitively, the disjunctive rule guesses a color for each edge. The first con-
straint eliminates the colorings containing a red clique (i.e., a complete graph)
with 3 nodes, and the second constraint eliminates the colorings containing a
blue clique with 4 nodes. The program P ∪ F has an answer set if and only if
there is a coloring of the edges of the complete graph on n nodes containing no
red clique of size 3 and no blue clique of size 4. Thus, if there is an answer set
for a particular n, then n is not R(3, 4), that is, n < R(3, 4). On the other hand,
if P ∪F has no answer set, then n ≥ R(3, 4). Thus, the smallest n such that no
answer set is found is the Ramsey number R(3, 4).
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3.3 Optimization Problems

In this section, we present two optimization problems, the first one is a classical
graph theory problem, while the second one concerns exam scheduling.

Maximal Cut. Given a graph G = (V,E) we want to compute the maximal cuts
of the graph, i.e. a partition of V in two sets V1 and V2 such that the number of
edges of G having one endpoint in V1 and one endpoint in V2 is maximal.

Suppose that the graph G is specified by facts over predicates node and edge.
Then, the following program compute the maximal cuts of G:

v1(X) v v2(X) :-node(X).
:∼ v1(X), v2(Y ), notedge(X,Y ). [1 : 1]
:∼ v2(X), v1(Y ), notedge(X,Y ). [1 : 1]

Here the disjunctive rule guesses whether node(X) is in the subset V1 or V2,
thus generating all the possible partitions of nodes into subsets. Then, the two
weak constraints allow for preferring partitions where the number of edges with
both nodes assigned to the same subset is minimum.

Exam Scheduling. Here we have to schedule the exams for several university
courses in three time slots t1, t2, and t3 at the end of the semester. In other
words, each course should be assigned exactly to one of these three time slots.
Specific instances I of this problem are provided by sets FI of facts specifying
the exams to be scheduled. An example fact is exam(cs1, lee, cs, 1) specifying the
exam identified as cs1, taken by lee, of the first year of the curriculum cs.

Several exams can be assigned to the same time slot (the number of avail-
able rooms is sufficiently high), but the scheduling has to respect the following
specifications:

S1 Two exams given by the same professor cannot run in parallel, i.e., in the
same time slot.

S2 Exams of the same curriculum should be assigned to different time slots, if
possible. If S2 is unsatisfiable for a curriculum C, one should:

(S21) first of all, minimize the overlap between exams of the same year of C,
(S22) then, minimize the overlap between exams of different years of C.

This problem can be encoded in the DLV language by the following program P:

at(Id, t1) v at(Id, t2) v at(Id, t3) :- exam(Id, P, C, Y ).
:- at(Id, T ), at(Id′, T ), Id <> Id′, exam(Id, P, C, Y ), exam(Id′, P, C′, Y ′).
:∼ at(Id, T ), at(Id′, T ), exam(Id, P, C, Y ), exam(Id′, P ′, C, Y ), Id <> Id′. [1 : 2]
:∼ at(Id, T ), at(Id′, T ), exam(Id, P, C, Y ), exam(Id′, P ′, C, Y ′), Y <> Y ′. [1 : 1]

The disjunctive rule generates the possible assignments of exams to time slots
and the strong constraint discards the assignments of the same time slot to two
exams of the same professor, as required by the specification S1. Finally, the
two weak constraints state that exams of the same curriculum should possibly
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not be assigned to the same time slot. However, the first one, which has higher
priority (level 2), states this desire for the exams of the curriculum of the same
year, while the second one, which has lower priority (level 1) states it for the
exams of the curriculum of different years.

4 DLV Implementation

A main strength of DLV is its implementation which is based on solid theo-
retical foundations, and relies on sophisticated data structures and advanced
optimization techniques. In this section we first outline the main aspects of the
DLV computation, then we give an overview of the main techniques which were
employed in the implementation. Finally, we describe the general architecture of
the system.

The computation of the answer sets in DLV is characterized by two phases,
namely program instantiation (grounding) and answer set search. The former
transforms the input program into a semantically equivalent one with no vari-
ables (ground) and the latter applies propositional algorithms on the instantiated
program to generate answer sets.

Grounding in DLV is more than a simple replacement of variables by all
possible ground terms: It partially evaluates relevant program fragments, and
efficiently produces a ground program which has precisely the same answer sets.
The size of the instantiation is a critical aspect for the efficiency of the system:
On the one hand, instantiated programs can require exponential space, on the
other hand, the answer set search can take exponential time in the size of the
grounded program. Therefore even a small reduction in the size of the generated
instantiation can yield significant performance gains.

Answer set search is then performed by the Model Generator (MG) and the
Model Checker (MC) on the program produced by the grounding. Roughly, the
MG produces “candidate” answer sets, the stability of which is subsequently
verified by the MC. MG is the non-deterministic core of the system, and it is
implemented as a backtracking search similar to the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [13] for SAT solving. Basically, starting from the
empty (partial) interpretation, the Model Generator repeatedly assumes truth-
values for atoms (branching step), subsequently computing their deterministic
consequences (propagation step). This is done until either an answer set candi-
date is found or an inconsistency is detected. Candidate answer sets are then
checked by the Model Checker module; whereas, if an inconsistency is detected,
chosen literals have to be undone. For disjunctive programs, model checking is
as hard as the problem solved by the Model Generator, while it is trivial for
non-disjunctive programs.

4.1 Main Optimization Techniques

Many optimization techniques have been incorporated into the DLV engine,
including database techniques for efficient instantiation, advanced pruning oper-
ators, look-ahead and look-back techniques for model generation, and innovative
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techniques for answer-set checking. In the following, we recall the most relevant
ones which have been adopted in the main phases of the evaluation.

Instantiation Phase. DLV implements several relevant optimization techniques
for the instantiation, mainly descending from the databases field, aimed at reduc-
ing both the size of the instantiation and the time needed for generating it. For
instance, the DLV instantiator implements a Program Rewriting [15] strategy
descending from query optimization techniques in relational algebra which allows
for reducing in many cases the size of the program instantiation. According to
this technique, program rules are automatically rewritten by pushing projections
and selections down the execution tree as much as possible. Another rewriting-
based optimization technique used in DLV are Dynamic Magic Sets [10, 1], an
extension of the Magic Sets technique originally defined for standard Datalog
for optimizing query answering over logic programs. The Magic Sets technique
rewrites the input program for identifying a subset of the program instantiation
which is sufficient for answering the query. The restriction of the instantiation is
obtained by means of additional “magic” predicates, whose extensions represent
relevant atoms w.r.t. the query. Dynamic Magic Sets, specifically conceived for
disjunctive programs, inherit the benefits provided by standard magic sets and
additionally allow for exploiting the information provided by the magic predi-
cates also during the non-deterministic answer set search.

Another group of techniques concerns the instantiation process of each rule
of the program. In particular, since computing all the possible instantiations of a
rule is, basically, analogous to computing all the answers of a conjunctive query
joining the extensions of literals of the rule body, DLV uses a Join Ordering [25]
strategy for determining an efficient evaluation order of the literals in the rule
and a main-memory On-demand Indexing technique, where a generic argument
can be indexed (established according to a heuristic), indices are computed on
demand during the evaluation. In addition, the rule instantiation procedure of
DLV implements a BackJumping algorithm [31] which exploits both seman-
tic and structural information about the rule for computing efficiently only a
relevant subset of its ground instances, avoiding the generation of “useless” in-
stances, while fully preserving the semantics of the program.

In the last few years, in order to make use of modern multi-core/multi-
processor computers, a parallel version of the DLV instantiator has been realized
based on a number of strategies [9, 30] which allow for three levels of parallelism
during the instantiation process, namely, components, rules and single rule level.

Model Generation Phase. One of the main optimizations used in the model
generation phase concerns the propagation step, where an advanced pruning
operator [8, 16] is applied that allows to prune the search space by combining an
extension of the well-founded operator for disjunctive programs.

The efficiency of the whole model generation process depends also on two cru-
cial features: a good heuristic (branching rule) to choose the branching literal
(i.e., the criterion determining the literal to be assumed true at a given stage
of the computation); and a smart recovery procedure for undoing the choices
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causing inconsistencies. To this end, both look-ahead [18] and look-back [34, 28]
techniques and heuristics have been implemented in DLV. In a lookahead heuris-
tic [18] each possible choice literal is tentatively assumed, its consequences are
computed, and some characteristic values on the result are recorded. The look-
ahead heuristics of [18] “layers” several criteria based on peculiar properties
of DLV programs, and basically drives the search towards “supported” inter-
pretations (since answer sets are supported interpretations – cf. [27, 29, 3]). In
look-back heuristics choices are usually made in such a way that the atoms most
involved in conflicts are chosen first. Look-back heuristics are mainly employed
in conjunction with backjumping, where the set of chosen literals that are rele-
vant for an inconsistency are detected, and the system goes back in the search
until at least one choice that caused the inconsistency is undone. The back-
jumping technique of DLV makes use of a reason calculus [34] that allows for
determining the relevance for an inconsistency; in particular, the information
about the choices (“reasons”) whose truth-values have caused truth-values of
other deterministically derived atoms is collected and used for backjumping.

Model Checking Phase. A crucial step in the computation of the answer sets
is model checking. There are two main reason for the importance of the model
checking step: the exponential number of possible models (model candidates),
and the hardness of stable model checking. Note that, when disjunction is allowed
in the head, deciding whether a given model is a stable model of a propositional
ASP program is co-NP complete in general [12]. For this phase DLV adopts a
technique based on a transformation T , which reduces stable model checking to
UNSAT, i.e., to deciding whether a given CNF formula is unsatisfiable. Thus, the
stability of a candidate answer set M for a program P is verified by calling a SAT
solver on the CNF formula obtained by applying T to P . The transformation
consumes logarithmic space and no new symbols are added.

4.2 DLV Architecture

The system architecture of DLV is shown in Figure 1. Upon startup, the input
specified by the user is parsed and transformed into the internal data structures
of the system. The input can be read from text files, but, as already mentioned,
DLV also provides an interface to relational databases via ODBC. The Intelligent
Grounder (IG) module efficiently generates a ground instantiation Ground(P)
of the input, using techniques described in Section 4.1. Note that for stratified
programs the IG module already computes the single answer set and does not
produce any instantiation. The subsequent computations, which constitute the
non-deterministic part of the DLV system, are then performed on Ground(P)
by the Model Generator and the Model Checker as outlined in Section 4.1.

Once an answer set has been found, the Model Generator may resume in
order to look for further answer sets. This process is continued until either no
more answer sets exist or an explicitly specified number of answer sets has been
computed.
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Fig. 1. General architecture of the DLV system.

Note that, in presence of weak constraints, after the instantiation of the
program, the computation is governed by the WCH module and consists of two
phases: (i) the first phase determines the cost of an optimal answer set together
with one “witnessing” optimal answer set and, (ii) the second phase computes
all answer sets having that optimal cost. It is worthwhile noting that both the IG
and the MG also have built-in support for weak constraints, which is activated
(and therefore incurs higher computational cost) only if weak constraints are
present in the input. The MC, instead, does not need to provide any support for
weak constraints, since these do not affect answer-set checking at all.

5 Reasoning on Top of Databases: DLVDB

In real world applications, reasoning is often done on existing data sources;
in these contexts, current deductive database systems show some limitations,
namely: (i) the amount of data that can be handled is limited since most of
them work in main memory; (ii) the interaction with external (and autonomous)
sources of data, like databases, is not trivial and, in several cases, not allowed at
all; (iii) the efficiency of existing solutions is still not sufficient for their utilization
in complex reasoning tasks involving massive amount of data.

DLVDB comes as a database oriented extension of DLV aiming to overcome
these drawbacks. As it will be clear in the following, this extension is signifi-
cantly more complex than the simple #import/#export commands introduced
previously. In this section we provide a brief description of its main characteris-
tics, inspiring ideas, and possible applications.

5.1 Main Features

The language supported by DLVDB consists of disjunctive and unstratified pro-
grams, with aggregates and strong constraints; moreover, it provides the possibil-
ity to introduce DBMS-stored function calls directly in the programs as external
built-ins. Weak constraints and complex terms are not supported yet.

The basic idea underlying DLVDB is the translation of the input DLV pro-
gram into a query plan composed of standard SQL queries. The evaluation strat-
egy adopted by the system puts its basis on the sharp distinction existing be-
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tween the grounding and the model generation phases. Two distinct strategies
are adopted in case the input program is non-disjunctive and stratified or not.

If a program is non-disjunctive and stratified, it has a unique stable model
corresponding exactly to its ground instantiation. The evaluation of these pro-
grams can be done by translating each rule into a corresponding SQL statement,
and in the composition of a suitable query plan on the DBMS; the evaluation of
recursive rules is carried out with an improved semi-näıve approach.

In presence of disjunctive rules or unstratified negation in a program, its
ground instantiation is no more sufficient to compute its stable models. Then,
grounding and model generation phases must both take place. The evaluation
strategy, in this case, moves most of the grounding into the database, by the ex-
ecution of suitable SQL queries. This phase generates two kinds of data: ground
atoms (facts) valid in every stable model (and thus not requiring further elab-
oration in the model generation phase) and ground rules, summarizing possible
values for a predicate and the conditions under which these can be inferred.

Facts compose the so called solved part of the program, whereas ground rules
form the residual program. One of the main challenges in DLVDB is to keep the
smallest amount of information as possible in main memory; consequently, the
residual program generated by the system is as small as possible.

The minimal residual program is then loaded into the main memory, and the
model generation is carried out with the standard DLV techniques, described
previously.

DLVDB also ports DLV built-in predicates to databases, and extends this
functionality to any stored function defined in the database (in the following,
we call them external built-ins). The evaluation of such external built-ins is
completely carried out during the grounding (this is true even for disjunctive or
unstratified programs). As a consequence, their handling can be carried out com-
pletely within the SQL statements generated for the query plan. By convention,
given an external built-in #f(X1, . . . , Xn, O) only the last variable O can be con-
sidered as an output parameter, whereas all the other variables must be intended
as input for f and, thus, they must be safely bound to some other variables in the
rule body. This corresponds to the database function call f(X1, . . . , Xn) = O.
For example, consider the rule:

mergedNames(ID,Name) :- person(ID, F irstName, LastName),
#concat(FirstName, LastName,Name).

This rule is translated into:

INSERT INTO mergedNames (SELECT person.ID,
concat(person.FirstName,person.LastName) FROM person);

In order to allow for a strict coupling between DLV and DBMSs, a set of
auxiliary directives has been designed so as to instruct DLVDB on how to map
intended input/output data onto DLV predicates; details on this aspect are given
in the next section.

As for current and future work, we plan to add the following features to the
system: (i) support for complex terms, (ii) introduction of techniques for the
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Fig. 2. Architecture of DLVDB .

distribution of the evaluation on multiple databases, and (iii) introduction of
techniques for improving query answering like unfolding and static filtering.

5.2 DLV DB Architecture

Figure 2 illustrates the architecture of DLVDB . In the figure, the boxes marked
with DLV have already been developed in the DLV system. An input program P

is first analyzed by the Parser which encodes the rules in the intensional database
(IDB) and stores in the working database facts specified directly in the input
program (if any). Then the Optimizer applies basic syntactic rewritings and the
Dependency Graph Builder computes the dependency graph of the program, its
connected components and a topological ordering of these components. Finally,
the DB Instantiator module, the core of the system, is activated.

The DB Instantiator module receives the Dependency Graph (DG) generated
by the Dependency Graph Builder and some auxiliary directives. Communication
with databases is performed via ODBC. This allows DLVDB both to be inde-
pendent from a particular DBMS and to handle databases distributed over the
Internet. Only strictly necessary information is transferred from the databases
to the system in order to limit the inherent inefficiency of these operations.

If the input program is non-disjunctive and stratified, the result of the in-
stantiation step is directly fetched to the filtering module; otherwise the Ground
Rule Generator module produces the residual program. This is transferred in
main memory to the standard DLV Model Generator for the identification of
the stable models. Note that all the data derived to be true in every stable
model by the DB Instantiator are kept inside the database.

As previously pointed out, DLVDB can be coupled with external databases
through some auxiliary directives. Intuitively, the user must specify the working
database and can specify a set of table definitions; each specified table must
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be mapped onto one of the program predicates. Facts can reside on separate
databases or they can be obtained as views on different tables. A USE or CREATE
directive can be used to specify input or output data, respectively. Finally, the
user can choose to copy the entire output of the evaluation or parts thereof in a
database different from the working one.

5.3 Using DLV DB for Data Integration

Data integration systems provide a transparent access to different and possibly
distributed sources. The user is provided with a uniform view of available infor-
mation by the so-called global schema, which queries can be posed upon. The
integration system is then in charge of accessing the single sources separately
and merging data relevant for the query, guided by mapping rules that specify
relationships holding between the sources and the global schema [2, 23].

The global schema may contain integrity constraints (such as key depen-
dencies, inclusion dependencies, etc.). The main issues in data integration arise
when original sources independently satisfy the integrity constraints but, when
they are merged through the mappings, they become inconsistent. As an exam-
ple, consider students of two universities; each student has an unique ID in his
university, but two different students in different universities may share the same
ID. Clearly, when they are combined in a global database, the key constraint on
student IDs of the global schema will be violated.

Most of the solutions to these problems are based on database repair ap-
proaches. Basically, a repair is a new database satisfying constraints of the global
schema with minimal differences from the source data. Note that multiple re-
pairs can exist for the same database. Then, answering queries over globally
inconsistent sources consists in computing those answers that are true in every
possible repair; these are called consistent answers in the literature.

Answer Set Programming is a powerful tool in this context, as demonstrated
for example by the approaches formalized in [2, 5, 24]. In fact, if mappings and
constraints on the global schema are expressed as disjunctive datalog programs,
and the query Q as a union of conjunctions on the global schema, the database
repairs correspond to the stable models of the program, and the consistent an-
swers to Q correspond to the answers of Q under cautious reasoning.

In this context, DLVDB provides: (i) the needed expressiveness to build mul-
tiple repairs and to perform cautious reasoning on them (not provided by stan-
dard SQL), (ii) the capability to deal with the massive amounts of data typical
of real world data integration scenarios (not provided by available deductive
systems), and (iii) an easy way to interact with autonomous and distributed
databases, a frequent setting in data integration processes.

Example 1. To have an intuition on the simplicity to use DLVDB as a data inte-
gration engine, consider two student relations s1(SID,Name) and s2(SID,Name)

of two different universities, and assume that the global schema is designed so
as to merge these lists, but keeping SID as a key for the global database.
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A program defining the mappings for the global relation sG and handling the
possible repairs for key constraint violations over student IDs is:

sR(ID,N) :- s1(ID,N). sR(ID,N) :- s2(ID,N).
sC(ID,N1) v sC(ID,N2) :- sR(ID,N1), sR(ID,N2), N1 6= N2.
sG(ID,N) :- sR(ID,N),not sC(ID,N).

Here the first two rules load all possible data from the sources, whereas the
third one avoids to put conflicting tuples in the global relation sG. Note that
the disjunctive rule allows the generation of the minimal repairs by singling out
conflicting tuples only.

Now, assume that s1 contains {s1(1234, John), s1(2345, Andrew)} and s2 con-
tains {s2(1234, David)}. There is globally a conflict between John and David
because they have the same ID. Then, there are two repairs for sG, namely
{sG(1234, John), sG(2345, Andrew)} and {sG(1234, David), sG(2345, Andrew)}.

If the user poses the query q1(N) :- sG(ID,N), the only consistent answer is:
Andrew, but if the user asks for q2(ID) :- sG(ID,N), the consistent answers are:
{1234, 2345}.

Finally, if the actual content of s1 and s2 is stored in two database tables
s1r on database DB1 and s2r on database DB2, in order to perform the query
evaluation on a database named workdb, the following auxiliary directives are
sufficient:
USEDB workdb:myname:mypasswd.

USE s1r MAPTO s1 FROM DB1:u1:pw1. USE s2r MAPTO s2 FROM DB2:u2:pw2.

6 Spin-Off and Applications

DLV is widely used by researchers all over the world, and, importantly, it has
stimulated quite some interest also in industry. Indeed, even if the industrial
exploitation of DLV has started fairly recently, it already has a history of ap-
plications on the industrial level.

The industrial application of DLV is mostly managed by two spin-off com-
panies of the University of Calabria, EXEURA s.r.l. and DLVSYSTEM s.r.l. .
EXEURA develops products and applications in the area of knowledge man-
agement based on DLV; while DLVSYSTEM maintains the DLV system and
provides consulting on its use.

In this section we present some of the industrial applications of DLV. In
particular, we first mention some industrial products of EXEURA incorporating
DLV as computational core. Then, we recall a number of industrial applications
based on DLV or on DLV-based products.

DLV-based Industrial Products. OntoDLV [35, 36], OLEX [11, 39], HıLεX [38, 37],
are three Knowledge Management products of EXEURA based on DLV.

OntoDLV [35, 36] is a system for ontology specification and reasoning. The
language of OntoDLV, called OntoDLP, is an extension of (disjunctive) ASP
with all the main ontology constructs including classes, inheritance, relations,
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and axioms. Importantly, OntoDLV supports a powerful interoperability mech-
anism with OWL, allowing the user to retrieve information from external OWL
Ontologies and to exploit this data in OntoDLP ontologies and queries. OntoDLV
facilitates the development of complex applications in a user-friendly visual envi-
ronment; it features a rich Application Programming Interface (API) [19], and it
is endowed with a robust persistency-layer for saving information transparently
on a DBMS, and it seamlessly integrates DLV [26].

OLEX [11, 39] (OntoLog Enterprise Categorizer System) is a corporate clas-
sification system supporting the entire content classification life-cycle, including
document storage and organization, ontology construction, pre-processing and
classification. OLEX employs a reasoning-based approach to text classification
which combines: (i) ontologies for the formal representation of the domain knowl-
edge; (ii) pre-processing technologies for a symbolic representation of texts and
(iii) ASP as categorization rule language and DLV as ASP engine. Logic rules,
indeed, provides a natural and powerful way to encode how document contents
may relate to ontology concepts.

HıLεX [38, 37] is an advanced system for ontology-based information extrac-
tion from semi-structured and unstructured documents. HıLεX implements a se-
mantic approach to the information extraction problem able to deal with dif-
ferent document formats (html, pdf, doc, ...). HıLεX is based on OntoDLP for
describing ontologies, and supports a language that is founded on the concept
of ontology descriptor. A “descriptor” looks like a production rule in a formal
attribute grammar, where syntactic items are replaced by ontology elements.
The obtained specification is rewritten in ASP and evaluated by means of the
DLV system.

Industrial Applications. Commercial applications based on DLV include:
Team Building in the Gioia-Tauro Seaport. A system based on DLV has

been developed to automatically produce an optimal allocation of the available
personnel of the international seaport of Gioia Tauro [21]. The system currently
employed by the transshipment company ICO BLG can build new teams satis-
fying a number of constraints or complete the allocation automatically when the
roles of some key employees are fixed manually.

E-Tourism. IDUM [22] is an intelligent e-tourism system. IDUM system helps
both employees and customers of a travel agency in finding the best possible
travel solution in a short time. In IDUM an ontology modeling the tourism sce-
nario was developed by using OntoDLV, and is automatically filled by processing
the offers received by a travel agent with HıLεX. IDUM mimics the behavior of
the typical employee of a travel agency by running a set of specifically devised
logic programs that reason on the information contained in the tourism ontology.

Automatic Itinerary Search. In this application, a Web portal has been con-
ceived for making the public transportation system of the Italian region Cal-
abria more accessible, including both public and private companies. The system
specifies locations and time tabling of start/transfers/arrival, as well as other in-
formation on the trip, like walking directions, duration, etc. A set of specifically
devised ASP programs are used to build the required itineraries.
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e-Government. An application of the OLEX system has been developed which
classifies legal acts and decrees issued by public authorities. The system was
validated with the help of the employees of the Calabrian Region administration,
and it performed very well by obtaining a mean precision of 96% on real-world
documents.

e-Medicine. OLEX has been used to develop a system capable of automati-
cally classifying case histories and documents containing clinical diagnoses. The
system was commissioned with the goal of conducting epidemiological analyses,
by the ULSS n.8 (which is, a local authority for health services) of the area
of Asolo, in the Italian region Veneto. The system has been deployed and is
currently used by the personnel of the ULSS of Asolo.
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