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Abstract. We propose a generalization of the well-known Magic Sets technique
to Datalog¬ programs with (possibly unstratified) negation under stable model
semantics. Our technique produces a new program whose evaluation is generally
more efficient (due to a smaller instantiation), while preserving soundness under
cautious reasoning. Importantly, if the original program is consistent, then full
query-equivalence is guaranteed for both brave and cautious reasoning, which
turn out to be sound and complete.
In order to formally prove the correctness of our Magic Sets transformation, we
introduce a novel notion of modularity for Datalog¬ under the stable model se-
mantics, which is relevant per se. We prove that a module can be evaluated inde-
pendently from the rest of the program, while preserving soundness under cau-
tious reasoning. For consistent programs, both soundness and completeness are
guaranteed for brave reasoning and cautious reasoning as well.
Our Magic Sets optimization constitutes an effective method for enhancing the
performance of data-integration systems in which query-answering is carried out
by means of cautious reasoning over Datalog¬ programs. In fact, preliminary
results of experiments in the EU project INFOMIX, show that Magic Sets are
fundamental for the scalability of the system.

1 Introduction

Datalog¬ programs are function-free logic programs where negation may occur in the
bodies of rules [1]. Datalog¬ with stable model semantics [2, 3] 1 is a very expres-
sive query language in a precise mathematical sense: under brave (cautious) reasoning
Datalog¬ allows to express every query that is decidable in the complexity class NP
(co-NP) [4]. In the 90s, Datalog¬ was not considered very much in the database commu-
nity, mainly because of the high complexity of its evaluation (NP or co-NP depending
on the reasoning modality [5–7]). However, the emerging of important database appli-
cations strictly requiring the co-NP expressiveness of Datalog¬ (see below and Sect. 5),
along with the availability of a couple of effective Datalog¬ systems, like DLV [8] and
Smodels [9], has renewed the interest in this language.

Our motivation to study optimization techniques for Datalog¬, comes from the data-
integration area that we are investigating within the EU project “INFOMIX: Boosting
? This work was supported by the European Commission under projects IST-2002-33570 IN-

FOMIX, and IST-2001-37004 WASP.
?? Funded by an APART grant of the Austrian Academy of Sciences.

1 Unless explicitly specified, Datalog¬ will always denote Datalog with negation under stable
model semantics in this paper.



Information Integration”. INFOMIX is a powerful data-integration system, which is
able to deal with both inconsistent and incomplete information. Following many re-
cent proposals (see, e.g., [10–15]), query answering in the INFOMIX data-integration
system is reduced to cautious reasoning on Datalog¬ programs under stable model se-
mantics. This reduction is possible since query answering in data-integration systems
is co-NP-complete (in our setting and also in many other data-integration frameworks
[15, 13]) like cautious reasoning on (unstratified) Datalog¬ programs under the stable
model semantics [5–7].

Dealing with a co-NP-complete problem can appear unfeasible, or even crazy in
a database setting where input may be very large. However, our present results show
that suitable optimization techniques can “localize” the computation and limit the inef-
ficient (co-NP) computation to a very small fragment of the input, obtaining fast query-
answering, even in a powerful data-integration framework. The main contribution of the
paper is the following.

� We define the new notions of independent set and module for Datalog¬, allowing
us to identify program fragments which can be evaluated “independently”, disre-
garding the rest of the program. The new notion of module is crucial for proving
the correctness of our magic set method. It is strictly related to the splitting sets of
[16], and to the modules of [17]; but we demonstrate that our notion has stronger
semantic properties, which are useful for the computation.

� We design an extension of the Magic Set algorithm for general Datalog¬ programs
(MS¬ algorithm for short). We show that different to stratified Datalog¬, where
bindings are propagated only head-to-body in a rule, unstratified negation requires
bindings to be propagated also body-to-head in general, in order to guarantee query
equivalence. Such a body-to-head propagation, which has been carefully incorpo-
rated in our MS¬ method, allows us to properly deal with those rules (called danger-
ous rules) which may be the source of semantic problems. And, in fact, we prove
that the rewriting generated by MS¬ is query equivalent to the input program P
(under both brave and cautious semantics), provided that P is consistent. Even if
the program is inconsistent soundness under cautious semantics and completeness
under brave semantics are guaranteed by our transformation.

� We show that our method can be profitably exploited for query optimization in
powerful data integration systems, where also incompleteness and inconsistency of
data is dealt with; and we apply MS¬ in the EU project INFOMIX. Specifically,
we show that our Magic Set technique can be employed for the optimization of
the logic programs specifying the database repairs 2 [10–15] (the queries on the
data-integration system are eventually evaluated on these programs). MS¬ always
ensures the full query equivalence of the optimized program w.r.t. the original one,
since such programs are guaranteed to be consistent (a database repair always ex-
ists). Preliminary results of experiments, that we carried out on a real application
scenario, confirmed the viability and the effectiveness of our approach: the applica-
tion of the Magic Set method allows us to “localize” the computation, and to obtain
fast query-answering, even in a powerful data-integration framework.

2 Note that no previous magic-set technique is applicable, since these programs are unstratified
and are to be evaluated under stable models semantics.



2 Preliminaries and Notations

2.1 Datalog¬ Queries

An atom p(t1, . . . , tk) is composed of a predicate symbol p of arity k and terms
t1, . . . , tk, which can either be constants or variables. A (Datalog¬ rule) r is of
the form h:- b1, . . . , bm,not bm+1, . . . ,not bn., where h, b1, · · · , bn are atoms and
0 ≤ m ≤ n.H(r) = h is the head of r, while B(r) = B+(r) ∪ B−(r) is the body
of r, where B+(r) = {b1, . . . , bm} is the positive and B−(r) = {bm+1, . . . , bn} the
negative body of r. Finally, let Atoms(r) = {H(r)} ∪B(r) denote the set of atoms in
r, and Atoms(P) = {Atoms(r) | r ∈ P} for a program P.

A rule r with H(r) = p(t1, . . . , tk) is a defining rule for predicate p. If for a rule r,
B(r) = ∅ holds, the rule is a fact. If all defining rules of a predicate p are facts, then p is
an EDB predicate, otherwise it is an IDB predicate. A rule r is positive if B−(r) = ∅.
Throughout this paper, we assume that rules are safe, that is, each variable of a rule r
appears in B+(r) [1].

A datalog program with negation (Datalog¬ program for short) P is a finite set of
rules. A query Q is simply an atom. We call an atom, rule, program, or query ground,
if they do not contain variables. Given a program P, we denote by Ground(P) the set
of all the rules obtained by applying to each rule r ∈ P all possible substitutions from
the variables in r to the set of all the constants in P.

Let the base BP of P be the set of ground atoms constructible from predicates and
constants in P. A set of atoms I ⊆ BP is an interpretation for P. Given an interpretation
I and set of rules T , let the restriction of I to T be defined as I/T = I ∩Atoms(T ). In
a similar way, let the restriction of a set S of interpretations to T be defined as S/T =
{I/T | I ∈ S}, and let the restriction of a rule r to T (R/T ) be defined by dropping
all body literals which are not in Atoms(T ). Given a positive rule r ∈ Ground(P),
an interpretation I satisfies r if B(r) ⊆ I implies H(r) ∈ I . An interpretation I is a
model of a Datalog program P if I satisfies all rules in Ground(P). The stable model
of a Datalog program P is the unique subset-minimal model MM(P).

Given a Datalog¬ program P and an interpretation I , the Gelfond-Lifschitz trans-
form PI is defined as {H(r):-B+(r) | r ∈ Ground(P) : I∩B−(r) = ∅}. The set of
stable models of a Datalog¬ program P, denoted by SM(P), is the set of interpretations
I , such that I = MM(P I). P is consistent if SM(P) 6= ∅, otherwise inconsistent.

Let a be a ground atom and a program P, then a is cautious consequence of P,
denoted by P |=c a, if ∀M ∈ SM(P) : a ∈ M; a is a brave consequence of P, denoted
by P |=b a, if ∃M ∈ SM(P) : a ∈ M. Given a query Q = b, Ansc(Q,P) denotes the
set of substitutions ϑ, such that P |=c bϑ; Ansb(Q,P) denotes the set of substitutions
ϑ, such that P |=b bϑ.

Let P be a Datalog¬ program and let F be a set of facts. Then, we denote by
PF the program PF = P ∪ F . Let P and P ′ be Datalog¬ programs and Q be a
query. Then, P is brave-sound w.r.t. P ′ and Q, denoted P⊆b

QP ′, if Ansb(Q,PF ) ⊆
Ansb(Q,P ′

F ) is guaranteed for all set of facts F ; P is cautious-sound w.r.t. P ′ and
Q, denoted P⊆c

QP ′, if Ansc(Q,PF ) ⊆ Ansc(Q,P ′
F ) for all F . P is brave-complete

(resp., cautious-complete) w.r.t. P ′ and Q, if P⊇b
QP ′ (resp., P⊇c

QP ′). Finally, P and



P ′ are brave-equivalent (resp., cautious-equivalent) w.r.t. Q, denoted by P≡b
QP ′ (resp.

P≡c
QP ′), if P⊆b

QP ′ and P⊇b
QP ′ (resp., P⊆c

QP ′ and P⊇c
QP ′).

With every program P, we associate a marked directed graph DGP = (N,E),
called the predicate dependency graph of P, where (i) each predicate of P is a node in
N , and (ii) there is an arc (a, b) in E directed from node a to node b if there is a rule
r ∈ P such that two predicates b and a of literals appear in H(r) and B(r), respec-
tively. Such an arc is marked if a appears in B−(r). An odd cycle in DGP is a cycle
comprising an odd number of marked arcs. One can also define the atom dependency
graph DGA

P of a ground program P, by considering atoms rather than predicates.

3 Modularity Results

The backbone of optimizations techniques like Magic Sets is to (automatically) iden-
tify a part of the (ground) program, which can be used instead of the entire program to
single out the query program (the part which is sufficient to answer the query). In the
negation-free or stratified setting it is sufficient to examine reachability in the head-to-
body direction. Negation under the stable semantics also gives rise to (partial) incon-
sistency, which may be triggered by activating an inconsistent part of the program in
the body-to-head direction. To this end we will first present a way to identify possibly
inconsistent parts of a program. Note that in this section we deal with ground programs.

Definition 1. Let P be a program (resp., ground program), and d be an predicate (resp.,
atom) of P. Then, we say that d is dangerous if either (i)d occurs in an odd cycle
of DGP (resp., DGA

P ), or (ii) d occurs in the body of a rule with a dangerous head
predicate (resp., atom). A rule r is dangerous, if it contains a dangerous predicate (resp.,
atom) in the head. 2

In principle, one can differentiate between conditional and unconditional sources
of inconsistencies. In the approach we present here, we are concerned with the first
type. In particular, that “isolated” inconsistencies are not covered, though one could
easily come up with a modified definition to account also for these. Intuitively, an in-
dependent atom set of a ground program P is a set S of atoms whose semantics is
not affected (apart from unconditional inconsistencies) by the remaining atoms of P,
and can therefore be evaluated by disregarding the other atoms. Independent atom sets
induce a corresponding module of P.

Definition 2. An independent atom set of a program P is a set S ⊆ BP such that
for each atom a ∈ S the following holds: (1) if a = H(r) for a rule r ∈ P then
Atoms(r) ⊆ S, and (2) if a appears in the body of a dangerous rule r ∈ P then
Atoms(r) ⊆ S. A subset T of a program P is a module if T = {r | H(r) ∈ S} for
some independent set S. 2

Example 1. Consider the following program P1:

z :- y,not z. y :- q. p:-not q. q :- not p. a:- p,not b. b:- p,not a.

Independent sets for P1 are {p, q, y, z}, ∅ and {p, q, y, z, a, b}, of which the first is
the only non-trivial one. The corresponding module T of P1 is

z :- y,not z. y :- q. p:-not q. q :- not p. 2



We next state the relationships between stable models of a program and its modules.

Theorem 1. Let T be a module of a program P, then (i) SM(P)/T ⊆ SM(T). More-
over, if P is consistent, then (ii) SM(T) = SM(P)/T.

Proof. (i) If P is inconsistent, then the statement trivially holds as SM(P)/T = ∅. So
in the following we will assume that P is consistent.

We show that if any interpretation I is a stable model of P, then I/T is also a stable
model of T : Recall that T ⊆ P and note that all rules contain only atoms of Atoms(T ),
by item 1 of Definition 2. Next, observe that T I/T = PI/T , hence T I/T ⊆ PI , and
therefore since I is a model of PI , it is also a model of T I/T . I/T can be shown to be
the minimal model of T I/T by observing that if a model J ⊂ I of T I/T would exist,
one could construct IJ = J ∪ {H(r) | r ∈ (PI − T I) ∧ B(r) ⊆ (I − I/T ) ∪ J} (J
extended with the part of I which is not from T , which still follows from J). Clearly,
IJ ⊂ I is then a model of PI , contradicting the assumption that I ∈ SM(P).
(ii, Sketch) Since (i) holds also for consistent programs, what remains to show is
SM(T) ⊆ SM(P)/T for consistent P. We show that for any stable model I of T , a
stable model J exists such that J/T = I . It has been shown that any odd-cycle-free
Datalog¬ program is consistent [18]. Now observe that the only odd cycles in P − T
are independent of T by item 2 of Definition 2. Since P is assumed to be consistent,
such odd cycles can be deactivated by the presence of some atoms of P − T , which, by
Definition 2, are completely independent of T , such that a set of appropriate atoms K
of P − T exists such that K ∪ I = J . 2

Corollary 1. Let T be a module of a consistent program P. Then, each stable model of
P can be obtained by enlarging a stable model of T .

From Thm. 1, we can obtain similar results for query answering:

Theorem 2. Given a ground atom q belonging to a module T of P, then (1) (T |=c

q) ⇒ (P |=c q), and (2) (T |=b q) ⇐ (P |=b q). Moreover, if P is consistent, then
(1) (T |=c q) ⇔ (P |=c q), and (2) (T |=b q) ⇔ (P |=b q).

Proof. If SM(P) = ∅ then P |=c q for any q ∈ Atoms(T ), while P |=b q for no q ∈
Atoms(T ). Therefore in this case, the implications are trivially satisfied. So from now
on, consider SM(P) 6= ∅. In this case, the set of cautious consequences is

⋂
SM(P)

and the set of brave consequences is
⋃

SM(P) in any case. Using Thm. 1 we can obtain
the following:
1. We have to show that if q is in all stable models of T , then it is also in all stable
models of P. Clearly, we have (

⋂
SM(T)) ⊆ (

⋂
SM(P)/T) and therefore the result

follows.
2. We have to show that if q is in some stable models of P, then it is also in some
stable model of T . Symmetrically, (

⋃
SM(P)/T) ⊆ (

⋃
SM(T)) and therefore the

result follows.
The equivalence result then follows directly from Thm. 1, since in this case both

(
⋂

SM(T)) = (
⋂

SM(P)/T) and (
⋃

SM(P)/T) ⊆ (
⋃

SM(T)) hold. 2



4 Magic Set Method for Datalog¬ Programs

In this section we present the Magic Set algorithm for general non-ground Datalog¬

programs (MS¬ algorithm for short). After recalling the Magic Set algorithm for pos-
itive Datalog queries, we discuss the key issues arising when dealing with Datalog¬

programs with unstratified negation. We then present the resulting MS¬ method, and
finally we show some query equivalence results.

4.1 Datalog Programs

We will illustrate how the Magic-Set method simulates the top-down evaluation of a
query by considering the program consisting of the rules path(X, Y):- edge(X, Y). and
path(X, Y):- edge(X, Z), path(Z, Y). together with query path(1, 5)?.

Adornment Step: The key idea is to materialize, by suitable adornments, binding
information for IDB predicates which would be propagated during a top-down compu-
tation. These are strings of the letters b and f , denoting bound or free for each argument
of an IDB predicate. First, adornments are created for query predicates. The adorned
version of the query above is pathbb(1, 5).

The query adornments are then used to propagate their information into the body of
the rules defining it, simulating a top-down evaluation. Obviously various strategies can
be pursued concerning the order of processing the body atoms and the propagation of
bindings. These are referred to as Sideways Information Passing Strategies (SIPS), cf.
[19]. Any SIPS must guarantee an iterative processing of all body atoms in r. Let q be
an atom that has not yet been processed, and v be the set of already considered atoms,
then a SIPS specifies a propagation v →χ q, where χ is the set of the variables bound
by v, passing their values to q. In this paper we consider the SIPS which propagates
binding only through EDB atoms; IDB atoms receive the bindings, but do not bound
any further variable.

In the first rule of the example (path(X, Y):- edge(X, Y).) a binding is only
passed to the EDB predicate edge (which is not adorned), yielding the adorned rule
pathbb(X, Y):- edge(X, Y). In the second rule, pathbb(X, Y) passes its binding in-
formation to edge(X, Z) by pathbb(X, Y) →{X} edge(X, Z). edge(X, Z) itself is not
adorned, but it gives a binding to Z. Then, we consider path(Z, Y), for which we
obtain the propagation pathbb(X, Y), edge(X, Z) →{Y,Z} path(Z, Y). This causes
the generation of the adorned atom pathbb(Z, Y), and the resulting adorned rule is
pathbb(X, Y):- edge(X, Z), pathbb(Z, Y).

In general, adorning a rule may generate new adorned predicates. This step
is repeated until all adorned predicates have been processed, yielding the adorned
program, in our example it consists of the rules pathbb(X, Y):- edge(X, Y). and
pathbb(X, Y):- edge(X, Z), pathbb(Z, Y).

Generation Step: The adorned program is used to generate magic rules, which sim-
ulate the top-down evaluation scheme. Let the magic version magic(pα) for an adorned
atom pα be defined as magic pα in which all arguments labelled f in α are eliminated.

Then, for each adorned atom p in the body of an adorned rule ra, a magic rule
rm is generated such that (i) the head of rm consists of magic(p), and (ii) the body
of rm consists of the magic version of the head atom of ra, followed by all of the



predicates of ra which can propagate the binding on p. In our example we generate
magic pathbb(Z, Y):- magic pathbb(X, Y), edge(X, Z).

Modification Step: The adorned rules are subsequently modified by includ-
ing magic atoms generated in Step 2 in the rule bodies. The resulting rules are
called modified rules. For each adorned rule the head of which is h, we extend
its rule body by inserting magic(h) and by stripping off the adornments of the
other predicates3. In our example, path(X, Y):- magic pathbb(X, Y), edge(X, Y). and
path(X, Y):- magic pathbb(X, Y), edge(X, Z), path(Z, Y). are generated.

Processing of the Query: For each adorned atom gα of the query the magic seed
magic(gα). is asserted. In our example we generate magic pathbb(1, 5).

The complete rewritten program consists of the magic, modified, and query rules.
Given a Datalog program P, a query Q, and the rewritten program P ′, it is well known
(see e.g. [1]) that P and P ′ are equivalent w.r.t. Q, i.e., P≡b

QP ′ and P≡c
QP ′ hold (since

brave and cautious semantics coincide for Datalog programs).

4.2 Binding Propagation in Datalog¬ Programs: Some Key Issues

As argued in Sect. 3, different to positive Datalog, in which bindings are propagated
only head-to-body in a rule, the problem with unstratified negation is that any rewriting
for Datalog¬ programs, has to propagate bindings also body-to-head in general, in order
to achieve query equivalence.

Example 2. Consider the program P2

z(X):- y(X),not z(X). y(X):- q(X,Y).

p(X,Y):- d(X,Y),not q(X,Y). q(X,Y):- d(X,Y),not p(X,Y).

a(X):- p(X,Y),not b(X). b(X):- p(X, Y),not a(X).

together with the query Q2 = p(a,X)?, and the set of facts F2 = {d(a, b)}. The
stable models of P2 are {p(a, b), a(a), d(a, b)} and {p(a, b), b(a), d(a, b)}, so we get
Ansc(Q2,P2,F2

) = Ansb(Q2,P2,F2
) = {{X/b}}. Note that q(a, b) cannot occur in

any stable model.
When applying the Magic Set technique,4 we obtain as adorned program:

p
bf(X,Y):- d(X,Y),not q

bb(X,Y). q
bb(X,Y):- d(X,Y),not p

bb(X,Y).

p
bb(X,Y):- d(X,Y),not q

bb(X,Y).

Then, the generation step produces the following magic program Magic(Q2,P2):

magic p
bf(a). magic q

bb(X,Y):- magic p
bf(X),d(X,Y).

magic p
bb(X,Y):- magic q

bb(X,Y). magic q
bb(X,Y):- magic p

bb(X,Y).

Finally, the original rules are modified to Modified(Q2,P2):

p(X,Y):- magic p
bf(X),d(X,Y),not q(X,Y). q(X,Y):- magic q

bb(X,Y),d(X,Y),not p(X,Y).

p(X,Y):- magic p
bb(X,Y),d(X,Y),not q(X,Y).

3 We do this only for facilitating the equivalence proofs, one can alternatively adorn the query.
4 We do not consider any special technique for negative literals. We adorn negative literals last,

since they receive bindings, but do not bind any further variables.



Input: A Datalog¬ program P, and a query Q = g(t).
Output: The optimized program MS

¬(Q,P).
var S: stack of adorned predicates; modifiedRules ,magicRules: set of rules;
begin

1. modifiedRules:= ∅; magicRules:=BuildQuerySeeds(Q, S);
2. while S 6= ∅ do
3. pα := S.pop();
4. for each rule r ∈ P with H(r) = p(tp) do
5. ra := Adorn(r,pα,S);
6. magicRules := magicRules

S

Generate(ra);
7. modifiedRules := modifiedRules

S

{Modify(ra)};
8. end for
9. for each dangerous rule d ∈ P of the form h(th) :− q1(t1), . . . , qm(tm) where qi = p do
10. let ds be the rule qi(ti) :− h(th), q1(t1), . . . , qi−1(t1), qi+1(t1), . . . , qm(tm);
11. let da:=Adorn(ds,pα,S);
12. magicRules := magicRules

S

Generate(da);
13. end for
14. end while
15. MS¬(Q,P):=magicRules ∪ modifiedRules ;
16. return MS

¬(Q,P);
end.

Fig. 1. Magic Set Algorithm

Together with the fact d(a, b), MS(P2) = Magic(Q2,P2) ∪ Modified(Q2,P2) ad-
mits two stable models, say M1 and M2, such that M1/P2

= {p(a, b)} and M2/P2
=

{q(a, b)}. Therefore, Ansc(Q2,MS(P2,F2
)) = ∅, and Ansb(Q2,MS(P2,F2

)) =
{{X/b}}. Hence, MS(P2) is not cautious-complete w.r.t. P2. 2

In general the application of the traditional Magic Set method on unstratified pro-
grams would guarantee cautious-soundness and brave-completeness, but it would not
ensure cautious-completeness and brave-soundness.

The reason for this semantic problem lies in the fact that the first rule of P2 acts
as a constraint imposing any atom of the form y(X) to be not entailed in any model.
Then, from the second rule we also conclude that we cannot derive any fact of the form
q(X, Y). It follows that the constraint “indirectly” influences the query on predicate p,
since the model M2 of the rewritten program such that M2/P2

= {q(a, b)} cannot be
extended to be a model for program P2.

In order to overcome this semantic problem, we next present a Magic Set rewriting
which deals correctly with dangerous rules. In the above example, our method recog-
nizes that the second rule is dangerous and propagates the binding coming from q (in
the body) to y (in the head).

4.3 MS¬ Algorithm

We next describe the peculiarities of our rewriting technique. We assume the existence
of four auxiliary functions: BuildQuerySeeds(Q, S) adorns the given query Q, creates
an appropriate fact, and pushes newly adorned predicates onto the stack S, which is a
variable parameter. Adorn(r,pα,S) adorns the rule r using pα and pushes new adorned
predicates onto S. Generate(ra) creates the magic rules for the adorned rule ra, and
Modify(ra) creates the modified rule for ra. These functions implement what was in-
formally described in Sect. 4.1 for the Magic Set method. In particular, we assume
that these functions implement the basic Magic Set method, propagating bindings only



through EDB predicates [22, 1] (as stated above, we do not consider any special tech-
nique for negative literals, which are simply adorned last in the rule).

The algorithm MS¬, reported in Fig. 1, implements the Magic Set method for
Datalog¬ programs. Its input is a Datalog¬ program P and a query Q. (Note that the
algorithm can be used for positive rules as a special case.) If the query contains some
constants, MS¬ outputs a (optimized) program MS¬(Q,P) consisting of a set of modified
and magic rules (denoted by modifiedRulesand magicRules , respectively). The algo-
rithm generates modified and magic rules on a rule-by-rule basis. To this end, it exploits
a stack S of predicates for storing all the adorned predicates that are still to be used for
propagating the query binding (the Adorn function pushes on S each adorned predi-
cates it generates, which has not been previously rewritten). At each step, an element
pα is removed from S, and the rules defining p are processed one-at-a-time.

The main steps of the algorithm MS¬ are illustrated by means of the program P2 in
Example 2, and the query Q2 = p(a, X).

The computation starts in step 2 by initializing modifiedRules to the empty set.
Then, the function BuildQuerySeeds is used for storing in magicRules the magic seeds,
and pushing on the stack S the adorned predicates of Q. For instance, given the query
Q2 and the program P2, BuildQuerySeeds creates magic pbf(a). and pushes pbf onto
the stack S.

The core of the technique (steps 2-13) is repeated until the stack S is empty, i.e.,
until there is no further adorned predicate to be propagated. Specifically, an adorned
predicate pα is removed from the stack S in step 3, and its binding is propagated.

In the steps 4-8, the binding of pα is propagated in a traditional way, to each rule r
of P having an atom p(t) in the head. This propagation is as in the standard Magic Set
method for stratified Datalog¬ programs.

Example 3. Consider again Example 2. Taking the predicate pbf from the stack en-
tails the adornment of the rule p(X, Y):- d(X, Y),not q(X, Y).. This yields the rule
pbf(X, Y):- d(X, Y),not qbb(X, Y)., and the predicate qbb is eventually pushed on the
stack. Then, we can proceed (by using the standard algorithms) with the genera-
tion of one magic (magic qbb(X, Y):- magic pbf(X), d(X, Y).) and one modified rule
(p(X, Y):- magic pbf, d(X, Y),not q(X, Y).). 2

Steps 9-13 performs the propagation of the binding through each dangerous rule
d in P of the form h(th):- p(tp), q1(t1), . . . , qm(tm)., having an atom p(tp) in the
body. These steps are, in fact, required for avoiding the semantic problems that we
have described in the previous section. In this case, in order to simulate the body-
to-head propagation, the rule d is first replaced by an “inverted” rule ds of the form
p(tp):- h(th), q1(t1), . . . , qm(tm)., which has been obtained by swapping the head
predicate with the body predicate propagating the binding. Then, the adornment can
be carried out as usual by means of the function Adorn. Since this “inverted” rule was
not part of the original program and its only purpose is generating binding information,
it will not give rise to a modified rule, but only to magic rules.

Example 4. When qbb is removed from the stack, it can be used for adorning the
body of the dangerous rule y(X):- q(X, Y). Hence, we obtain first the “inverted” rule



q(X, Y):- y(X). and adorn it, obtaining qbb(X, Y):- yb(X). which gives rise to one
magic rule: magic yb(X):- magic qbb(X, Y). 2

Finally, after all the adorned predicates have been processed the algorithm outputs
the program MS¬(Q,P).

Example 5. The complete rewriting of program P2 w.r.t. query Q2 (MS¬(Q2,P2)) con-
sists of the magic rules:

magic p
bf(a). magic q

bb(X,Y):- magic p
bf(X),d(X,Y).

magic p
bb(X,Y):- magic q

bb(X,Y). magic y
b(X):- magic q

bb(X,Y).

magic q
bf(X):- magic y

b(X). magic z
b(X):- magic y

b(X).

magic z
b(X):- magic y

b(X),z(X). magic p
bb(X,Y):- magic q

bf(X),d(X,Y).

magic q
bb(X,Y):- magic p

bb(X,Y).

plus the rewritten rules:

p(X,Y):- magic p
bf(X),d(X,Y),not q(X,Y). q(X,Y):- magic q

bb(X,Y),d(X,Y),not p(X,Y).

y(X):- magic y
b(X),q(X,Y). z(X):- magic z

b(X),y(X),not z(X).

q(X,Y):- magic q
bf(X),d(X,Y),not p(X,Y). p(X,Y):- magic p

bb(X,Y),d(X,Y),not q(X,Y).

It is worth noting that the rewritten program does not contain rules for predi-
cates a and b, since they are not relevant for answering Q2. MS¬(Q2,P2) admits
only one stable model M , such that M/P2

= {p(a, b)}. Hence, Ansc(Q2,P2,F2
) =

Ansb(Q2,P2,F2
) = X/b.the original semantics is preserved. 2

4.4 Query Equivalence Results

We conclude the presentation of the MS algorithm by formally proving its soundness.
The result is shown by establishing correspondences between a program P and its trans-
formed program MS¬(Q,P,) with respect to some query Q.

To show this result, we will employ the notion of simplification: Given a ground
program P and a subprogram U ⊆ P, which admits exactly one stable model S. Then
simplify(P, U) denotes the program {r/P−U | r ∈ (P − U) ∧ B+(r)/U ⊆ S ∧
B−(r)/U ∩ S = ∅}, which can be thought of as the partial evaluation w.r.t. S. This is
needed to get rid of the magic predicates, which are not present in the original program.

Lemma 1. Let P be a Datalog¬ program P, Q a query. Furthermore, we denote
by magic(Q,P) the set of magic rules in MS¬(Q,P). Then it holds that P ′′ =
simplify(Ground(MS¬(Q,P)),magic(Q,P) ∪ EDB(P)) is a module of P ′ =
simplify(Ground(P), EDB(P)).

Proof (Sketch). Observe that P ′′ ⊆ P ′ holds. Assume that P ′′ is not a module of P ′.
Then at least one of the following condition holds: (1) ∃r′ ∈ P ′ − P ′′, r′′ ∈ P ′′ :
H(r′) = H(r′′) (2) ∃r′′ ∈ P ′′ : ∃b ∈ B(r′′) : ∃r′ ∈ P ′ − P ′′ : b = H(r′) (3)
∃r′′ ∈ P ′′ : ∃r′ ∈ P ′ − P ′′ : H(r′′) ∈ B(r′) and r′ is dangerous. One can show that
all of (1), (2), and (3) lead to contradictions, and hence the result follows.

(1) For all rules in P with head predicate h, in MS¬(Q,P) there exists a copy for
each adornment that was generated for h. So for any simplified ground instance r of



such a rule with head atom h(c1, . . . , cn), either magic ha(c1, ..., cm) holds for at least
one adornment a of h, or it does not hold for any adornment of h. In the former case,
for each rule in P with h in its head, a corresponding rule with magic ha in its body
exists in MS¬(Q,P). If magic ha(c1, ..., cm) holds for no adornment a, no simplified
ground version of r is in P ′′. In total, for each ground atom h(c1, ..., cn) in P ′, either
all or none of its defining rules are in P ′′.

(2) Assume that r′′ (the head of which is h(c1, . . . , ch)) stems from a rule r′′o ,
which was adorned by a, such that magic ha(c1, . . . , ch1

) follows from the magic
rules. Each IDB body atom of r′′o has received some adornment based on a, in
which bound arguments either directly share bound variables (w.r.t. a) with h, or via
some EDB atoms. For any body predicate b, this gives rise to a magic rule rm :
magic ba1(tb1):-magic ha(ta), B. where B contains in particular all EDB atoms
relevant for bound arguments of b. Concerning r′ it contains some b(d1, . . . , db) of the
body of r′′ in its head, and its originating rule r′o is adorned by a1. So in MS¬(Q,P)
a rule r′m : b(tb2):-magic ba1(tb3), B

′. occurs. Note that for all bound arguments
d1, . . . , dk of b(d1, . . . , db) w.r.t. a1, magic ba1(d1, . . . , dk) follows from the magic
rules because of rm. So whenever a simplified ground instance of r′o with b(d1, . . . , db)
in the head exists, so does one of r′m, which is hence in P ′′.

(3) Observe first that the set of instantiations of dangerous rules in P is a superset
of the set of dangerous rules in Ground(P), which is in turn a superset the set of dan-
gerous rules in any simplification of Ground(P). So any dangerous rule in P ′ is also
dangerous in P. Therefore, the originating rule r′o ∈ P of r′ must have been adorned
and “inverted”, adorning in the following also the head of r′o. So the dangerous rule r′o
eventually also gives rise to a modified rule in MS¬(Q,P). Then, by the same argument
as in (2), a magic rule obtained from the “inverted” rule must exist in MS¬(Q,P), such
that one of its instantiations matches the bound arguments of H(r′). So r′ is in P ′′ iff
it is in P ′. 2

Theorem 3. Let P be a Datalog¬ program, let Q be a query. Then, it holds that (1)
MS¬(〈Q,P〉)⊆c

QP and MS¬(〈Q,P〉)⊇b
QP, and (2) if SM(P) 6= ∅, MS¬(〈Q,P〉)≡b

QP
and MS¬(〈Q,P〉)≡c

QP.

5 An Application to Data Integration

In this section we show an application of the Magic Set method for optimizing query
answering in data integration systems, and report on the experience we are doing in the
EU project INFOMIX on data integration. Let us first recall some basic notions.

A data integration system I is a triple 〈G,S,M〉, where G is the global (relational)
schema of the form G = 〈Ψ,Σ〉, S is the source (relational) schema of the form S =
〈Ψ ′, ∅〉, i.e., there are no integrity constraints on the sources, and M is the mapping
between G and S.

Example 6. Consider the data integration system I0 = 〈G0, S0, M0〉, a simpli-
fication of the Demo Scenario in the EU project INFOMIX described below. The
global schema G0 consists of the relations professor(IDP ,Pname,Phomepage),



student(IDS ,Sname,Saddress), exam data(IDP , IDS ,Exam,Mark). The associ-
ated constraints in Σ0 state that: (i) (key constraints) the keys of professor , student ,
and exam data are the attributes IDP , IDS , and (IDP , IDS ,Exam), respectively, (ii)
(exclusion dependency) a professor cannot be a student, and (iii) (inclusion dependen-
cies) the identifiers of professors and students in the relation exam data must be in
the relations professor and student , respectively. The source schema S0 comprises the
relations s1, s2, s3, and s4. Finally, the mapping M0 is defined by the datalog program
formed by professor(X,Y, Z):- s1(X,Y, Z)., professor(X,Y, Z):- s4(Z, Y,, X).,
student(X,Y, Z):- s2(Y,X,Z)., exam data(X,Y, Z,W ):- s3(Y,X,Z,W ). 2

Given a database D for the source schema S, the user might issue a query q on
the global schema which is populated by retrieving the data from D according to the
mapping M. However, while carrying out such an integration, it often happens that
the retrieved (global) database, denoted by ret(I,D), is inconsistent w.r.t. Σ since data
stored in local and autonomous sources are not in general required to satisfy constraints
expressed on the global schema.

To remedy this problem, several approaches (see, e.g., [10–15, 20]) defined the se-
mantics of a data integration system I in terms of the repairs rep(I,D) of the database
ret(I,D). Intuitively, each repair R ∈ rep(I,D) is obtained by properly adding and
deleting facts from ret(I,D) in order to satisfy constraints in Σ, as long as we “mini-
mize” such additions and deletions.

These repairs depend on the interpretation of the mappings in M, which, in fact,
impose restrictions or preferences on the possibility of adding or removing facts from
ret(I,D) to repair constraint violations. In the INFOMIX project, we have considered
the loosely-sound semantics according to which mappings might retrieve only a subset
of the tuples needed for answering the query. Hence, we can add an unbounded number
of tuples to repair violations of inclusion dependencies; nonetheless, the semantics is
loose in the sense that, in order to repair keys and exclusion dependencies, we are also
allowed to delete a minimal set of tuples.

Given a data integration system I and a source database D, a query q for I is an
atom comprising a global relation in I. Then, the answer to q is defined as the set
ans(q, I,D) of all substitutions ϑ, such that, for each 1 ≤ i ≤ k, biϑ is true in each
repair R in rep(I,D).

In order to design effective systems for query answering in data integration settings,
the repair semantics has been formalized in the INFOMIX project (as well as in other
approaches) by using logic programs, i.e., by encoding the constraints Σ of G and the
mapping assertions M into a logic program, Π(I,D), using unstratified negation, such
that the stable models of this program yield the repairs of the global database. The
correctness of the rewriting is shown by the following theorem.

Theorem 4 ([13]). Let I = 〈G,S,M〉 be a data integration system, D be a database
for S, and q be a query over G. Then, ans(q, I,D) coincides with Ansc(q,Π (I,D)).

An attractive feature of this approach is that logic programs serve as executable
logical specifications of repairs, and thus allow to state repair policies in a declarative
rather than a procedural manner. However, a drawback of this approach is that with cur-
rent implementations of stable model engines, such as DLV or Smodels, the evaluation



of queries over large data sets quickly becomes infeasible, which calls for suitable opti-
mization methods that help in speeding up the evaluation of queries expressed as logic
programs [14].

To this aim, the binding propagation techniques proposed in this paper can be prof-
itably exploited to isolate the relevant part of a database by ”pushing down” the query
constants to the sources. Importantly, our optimization fully preserves the original se-
mantics of the data-integration query. Indeed, the loosely-sound semantics for data in-
tegration always guarantees the existence of a database repair no matter of the types of
constraints in Σ, provided that the schema is non-key-conflicting [21]. Consequently,
Π(I,D) is guaranteed to be consistent, and the correctness of the application of the
Magic Set technique follows immediately from Thm. 3.

Theorem 5. Let I = 〈G,S,M〉 be a data integration system, D be a database for S,
and q be a query over G. Then, ans(q, I,D) coincides with Ansc(q, MS

¬(q,Π(I,D))).

In order to test the effectiveness of the Magic Set technique for query optimization
in data integration systems, we have carried out some experiments on the demonstration
scenario of the INFOMIX project, which refers to the information system of the Uni-
versity “La Sapienza” in Rome. The global schema consists of 14 global relations with
29 constraints, while the source schema includes 29 relations (in 3 legacy databases)
and 12 web wrappers (generating relational data) for more than 24MB of data.

Once a query q on I is submitted, a number of wrappers are executed to retrieve the
data from the relevant sources for q, storing it in a Postgres database. Then, the Datalog¬

system DLV imports the Postgres data, and computes the answers for q w.r.t. Π (I,D).
We measured the execution times of DLV for Π (I,D) and its magic-set rewritten ver-
sion MS¬(q,Π(I,D)). Several experiments confirmed that on various practical queries,
the performance is greatly improved by Magic Sets (in some cases, the query evaluation
time passes from more than 20 minutes to a few seconds), while in the other cases we
have observed no or only a minor overheads.

We finally observe that similar arguments can be also used to prove that our magic
set technique can be profitably exploited in other approaches to data integration such as
[10–12, 14]. In fact, all these approaches reduce answering a user query, q, to cautious
reasoning over a logic program Π(I,D) which is guaranteed to be consistent.

Some of these approaches actually use disjunctive datalog programs, possibly with
unstratified negation. We point out that the algorithm of this paper can be coupled with
the method in [30], which is defined on positive disjunctive programs, obtaining a magic
set method for arbitrary disjunctive programs.

6 Related Work and Conclusions

The Magic-Set method [22, 19, 1, 23] is one of the best known techniques for the op-
timization of Datalog queries. Many extensions and refinements of Magic-Sets have
been proposed, addressing e.g. query constraints [24], modular stratification and well-
founded semantics [25, 26], integration into cost-based query optimization [27]. The re-
search on enhancements to the Magic-Set method is still going on. For instance, in the
last-year ACM-PODS conference a magic-set technique for the class of soft-stratifiable



programs was presented [28], and in [29, 30] magic sets techniques for disjunctive pro-
grams were proposed.

An extension of the Magic Set technique for positive Datalog programs with in-
tegrity constraints has been presented in [31]. The proposed method is shown to be
brave complete and cautious sound. Comparing this method to our approach, we ob-
serve that: (1) Our method is more general than the method in [31], since the latter
deals only with a strict subset of Datalog¬ (recall that an integrity constraint :-C. is
just a shorthand for p:-C,not p); while our method supports full Datalog¬, allow-
ing for unstratified negation. (2) Our method has much better semantic properties than
[31]. Indeed, [31] do not ensure query equivalence in any case; while we guarantee full
query equivalence, unless the input program is inconsistent (see Thm. 3). Such a query
equivalence is in fact very relevant for data integration applications (see the previous
Section).

Our modularity results are strictly related to splitting sets, as defined in [16], or
equivalently to modules as defined in [17]. The main difference is that our notion of
modules and independent sets guarantee query equivalence for consistent programs,
which does not hold for these previous notions. In fact, in general, one can prove that
only the first two items of Thm. 2 hold for splitting-set modules.

A different kind of query optimization for data integration has been done in [32].
This approach does not exploit constants that appear in the query, but only inconsis-
tent (w.r.t. constraints of the global schema) portions of the retrieved database. In fact,
no systematic technique for query optimization in data integration systems exploiting
binding propagations has been proposed in the literature so far.

Concluding, we believe that our results are relevant to both theory and practice. On
the theory side, our modularity results provide a better understanding of the structural
properties of Datalog¬, complementing and advancing on previous works on modu-
larity properties of this language. Moreover, the MS¬ algorithm generalizes Magic Sets,
enlarging significantly their range of applicability to the full class of Datalog¬ programs
under the stable model semantics. Importantly, our work can be profitably exploited for
data-integration systems. Preliminary results of experiments show that the application
of our techniques allows us to solve very advanced data-integration tasks.
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