
Enhancing the Magic-Set Method for
Disjunctive Datalog Programs

Chiara Cumbo1, Wolfgang Faber2, Gianluigi Greco1, and Nicola Leone1

1 Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy,
{cumbo,greco,leone}@mat.unical.it

2 Institut für Informationssysteme, TU Wien, 1040 Wien, Austria,
faber@kr.tuwien.ac.at

Abstract. We present a new technique for the optimization of (partially) bound
queries over disjunctive datalog programs. The technique exploits the propaga-
tion of query bindings, and extends the Magic-Set optimization technique (origi-
nally defined for non-disjunctive programs) to the disjunctive case, substantially
improving on previously defined approaches.
Magic-Set-transformed disjunctive programs frequently contain redundant rules.
We tackle this problem and propose a method for preventing the generation of
such superfluous rules during the Magic-Set transformation. In addition, we pro-
vide an efficient heuristic method for the identification of redundant rules, which
can be applied in general, even if Magic-Sets are not used.
We implement all proposed methods in the DLV system – the state-of-the-art
implementation of disjunctive datalog – and perform some experiments. The ex-
perimental results confirm the usefulness of Magic-Sets for disjunctive datalog,
and they highlight the computational gain obtained by our method, which out-
performs significantly the previously proposed Magic-Set method for disjunctive
datalog programs.

1 Introduction

Disjunctive datalog (Datalog∨) programs are logic programs where disjunction may
occur in the heads of rules [1, 2]. Disjunctive datalog is very expressive in a precise
mathematical sense: it allows to express every property of finite ordered structures that
is decidable in the complexity class ΣP

2 [2]. Therefore, under widely believed assump-
tions, Datalog∨ is strictly more expressive than normal (disjunction-free) datalog which
can express only problems of lower complexity. Importantly, besides enlarging the class
of applications which can be encoded in the language, disjunction often allows for rep-
resenting problems of lower complexity in a simpler and more natural fashion (see [3]).

Recently, disjunctive datalog is employed in several projects, mainly due to the
availability of some efficient inference engines, such as the DLV system [4] and the
GnT system [5]. E.g., in [6] this formalism has been shown to be very well-suited for
database repair, and the European Commission has funded a couple of IST projects

focusing on the exploitation of disjunctive datalog in “hot” application areas like infor-
mation integration and knowledge management.3

The increasing application of disjunctive datalog systems stimulates the research on
algorithms and optimization techniques, which make these systems more efficient and
more widely applicable. Within this framework, we investigate here a promising line
of research consisting of the extension of deductive database techniques and, specifi-
cally, of binding propagation techniques exploited in the Magic-Set method [7–12], to
nonmonotonic logic languages like disjunctive datalog.

Intuitively, the goal of the Magic-Set method (originally defined for non-disjunctive
datalog queries only) is to use the constants appearing in the query to reduce the size
of the instantiation by eliminating “a priori” a number of ground instances of the rules
which cannot contribute to the derivation of the query goal.

The first extension of Magic-Set method to disjunctive programs is due to [13],
where the author observes that binding propagation strategies have to be changed for
disjunctive rules so that each time a head predicate receives some binding from the
query, it eventually propagates this relevant information to all the other head predicates
as well as to the body predicates (see Section 3.1). An algorithm implementing the
above strategy has been also proposed in [13]. Roughly, it is a rewriting algorithm that
bloats the program with some additional predicates (called collecting predicates), be-
sides the standard “magic” ones (intrinsic in the Magic-Set method) in order to make
the propagation strategy work — in the following we call this algorithm Auxiliary Pred-
icates Method (APM).

In this paper we provide fresh and refined ideas (w.r.t. [13]) for extending the Magic-
Set method to disjunctive datalog queries. In particular, we observe that the method in
[13] has two major drawbacks. First, the introduction of the new (collecting) predicates
enlarges the size of the grounding and consequently reduces the gain that could be po-
tentially achieved by the optimization. Second, several redundant (which are subsumed
by the rest of the program) rules are frequently generated by the application of this
method. Since the number of rules in a program is a critical performance factor, these
redundancies can deteriorate run-time behavior. In extreme cases this overhead alone
can outweigh the benefits of the optimization — since the evaluation of a disjunctive
datalog program requires exponential time in the size of its instantiation, a polynomial
increase in the size of the program instantiation may give an exponential increase in the
program evaluation time.

Here, we address both problems above. Specifically, the main contribution is the
following:

� We define a new Magic-Set method for disjunctive datalog. The new method,
called Disjunctive Magic-Set (DMS), overcomes some drawbacks of the previous
magic-set methods for disjunctive datalog. We provide an algorithm for the proposed
DMS method, which involves a generalization of sideways information passing to the
disjunctive case. Importantly, we formally prove the correctness of the DMS method by

3 The exploitation of disjunctive datalog for information integration is the main focus of the IN-
FOMIX project (IST-2001-33570); while an application of disjunctive datalog for knowledge
management is studied in ICONS (IST-2001-32429).

showing that given a query Q over a program P , the brave and cautious answers of Q

over P coincide, respectively, with the brave and cautious answers of Q over P ′, where
P ′ is the rewriting of P under DMS.
� We design effective techniques for avoiding redundant rules. The head-to-head
binding propagation needed for disjunctive programs (see [13] and Section 3.1), very
often causes the generation of many redundant rules (both APM and DMS are affected
by this problem). We experimentally observe that the presence of redundant rules slows
down the computation significantly, and may even counterpoise the advantages of the
magic sets optimization. Thus, we design two techniques for redundant-rules prevention
and elimination, respectively. The former technique prevents some cases of generation
of redundant rules, by storing some extra information on the binding-propagation flow.
Since the problem of redundant-rule identification is untractable (like clause subsump-
tion), to eliminate “a posteriori” redundant rules (which could not be avoided by the
former technique), we design a new and efficient heuristic for identifying redundant
rules. Note that this heuristic is not specific for the disjunctive Magic-Set method, and
can be applied for any type of logic program, even in the presence of unstratified nega-
tion and constraints. The enhancement of DMS with both our redundancy prevention
and elimination techniques, yields an improved method, called Optimized Disjunctive
Magic-Set Method (ODMS).
� We implement all the proposed methods and techniques. In particular, we im-
plement the DMS method and its enhancements for redundancy prevention and elim-
ination (yielding ODMS), in the DLV system [4] – the state-of-the-art implementa-
tion of disjunctive datalog. Both DMS and ODMS are fully integrated in the DLV
system, and their are completely transparent to the end user that can simply enable
them by setting the corresponding option. The interested reader can retrieve from
http://www.dlvsystem.com/magic/ a downloadable executable of the DLV
system in which an option for using DMS or ODMS is provided — the same url con-
tains some hints for its usage.
� We evaluate the efficiency of the implemented method: We have performed ex-
tensive experiments using benchmarks reported in the literature, comparing the perfor-
mance of the DLV system without optimization, with APM of [13], with DMS, and with
ODMS. These experiments show that our methods, especially ODMS, yields speedups
in many cases and only rarely produces mild overheads w.r.t. the native DLV system,
greatly improving on APM of [13].

2 Preliminaries

2.1 Disjunctive Datalog Queries

A disjunctive rule r is of the form a1 v · · · v an :- b1, · · · , bk., where
a1, · · · , an, b1, · · · , bk are atoms and n ≥ 1, k ≥ 0. The disjunction a1 v · · · v an

is the head of r, while the conjunction b1, . . . , bk is the body of r. Moreover, let
H(r) = {a1, . . ., an} and B(r) = {b1,. . . , bk}. A non-disjunctive rule with an empty
body (i.e. n = 1 and k = 0) is called a fact. If a predicate is defined only by facts, it
is referred to as EDB predicate, otherwise as IDB predicate. Throughout this paper, we
assume that rules are safe, that is, each variable of a rule r appears in a positive literal

of the body of r. A disjunctive datalog program (short. Datalog∨ program) P is a finite
set of rules; if P is disjunction-free, then it is a datalog program (Datalog program). A
query Q is a non-empty conjunction b1, · · · , bk of atoms.

Given a program P , we denote by ground(P) the set of all the rules obtained by
applying to each rule r ∈ P all possible substitutions from the variables in r to the set
of all the constants in P . The semantics of a program P is given by the set MM(P)
of the subset-minimal models of P . Note that on Datalog∨ the notion of answer set [1]
coincides to the notion of minimal model.

Let P be a Datalog∨ program and let F be a set of facts. Then, we denote by PF

the program PF = P ∪ F . Given a query Q and an interpretation M of P , ϑ(Q,M)
denotes the set containing each substitution φ for the variables in Q such that φ(Q) is
true in M . The answer to a query Q over PF , under the brave semantics, denoted by
Ansb(Q,PF), is the set ∪Mϑ(Q,M), such that M ∈ MM(P ∪ F). The answer to a
query Q over the facts in F , under the cautious semantics, denoted by Ans c(Q,PF),
is the set ∩Mϑ(Q,M), such that M ∈ MM(P ∪ F) 6= ∅. If MM(P ∪ F) = ∅,
then all substitutions over the universe for variables in Q are in the cautious answer.
Finally, we say that programs P and P ′ are bravely (resp. cautiously) equivalent w.r.t.
Q, denoted by P ≡Q,b P

′ (resp. P ≡Q,c P ′), if for any set F of facts Ansb(Q,PF) =
Ansb(Q,P ′

F) (resp. Ansc(Q,PF) = Ansc(Q,P ′
F)).

2.2 Magic-Set for Non-disjunctive Datalog Queries

We will illustrate how the Magic-Set method simulates the top-down evaluation of a
query by considering the program consisting of the rules path(X, Y):- edge(X, Y). and
path(X, Y):- edge(X, Z), path(Z, Y). together with query path(1, 5)?.

Adornment Step: The key idea is to materialize, by suitable adornments, binding
information for IDB predicates which would be propagated during a top-down compu-
tation. These are strings of the letters b and f , denoting bound or free for each argument
of an IDB predicate. First, adornments are created for query predicates. The adorned
version of the query above is pathbb(1, 5).

The query adornments are then used to propagate their information into the body of
the rules defining it, simulating a top-down evaluation. Obviously various strategies can
be pursued concerning the order of processing the body atoms and the propagation of
bindings. These are referred to as Sideways Information Passing Strategies (SIPS), cf.
[9]. Any SIPS must guarantee an iterative processing of all body atoms in r. Let q be
an atom that has not yet been processed, and v be the set of already considered atoms,
then a SIPS specifies a propagation v →χ q, where χ is the set of the variables bound
by v, passing their values to q.

In the first rule of the example (path(X, Y):- edge(X, Y).) a binding is only passed
to the EDB predicate edge (which will not be adorned), yielding the adorned rule
pathbb(X, Y):- edge(X, Y). In the second rule, pathbb(X, Y) passes its binding in-
formation to edge(X, Z) by pathbb(X, Y) →{X} edge(X, Z). edge(X, Z) itself is not
adorned, but it gives a binding to Z. Then, we consider path(Z, Y), for which we
obtain the propagation pathbb(X, Y), edge(X, Z) →{Y,Z} path(Z, Y). This causes
the generation of the adorned atom pathbb(Z, Y), and the resulting adorned rule is
pathbb(X, Y):- edge(X, Z), pathbb(Z, Y).

In general, adorning a rule may generate new adorned predicates. This step
is repeated until all adorned predicates have been processed, yielding the adorned
program, in our example it consists of the rules pathbb(X, Y):- edge(X, Y). and
pathbb(X, Y):- edge(X, Z), pathbb(Z, Y).

Generation Step: The adorned program is used to generate magic rules, which sim-
ulate the top-down evaluation scheme. Let the magic version magic(pα) for an adorned
atom pα be defined as magic pα in which all arguments labeled f in α are eliminated.

Then, for each adorned atom p in the body of an adorned rule ra, a magic rule
rm is generated such that (i) the head of rm consists of magic(p), and (ii) the body
of rm consists of the magic version of the head atom of ra, followed by all of the
predicates of ra which can propagate the binding on p. In our example we generate
magic pathbb(Z, Y):- magic pathbb(X, Y), edge(X, Z).

Modification Step: The adorned rules are modified by including magic atoms
generated in Step 2 in the rule bodies. The resultant rules are called modified
rules. For each adorned rule whose head is h, we extend the rule body by insert-
ing magic(h). In our example, pathbb(X, Y):- magic pathbb(X, Y), edge(X, Y). and
pathbb(X, Y):- magic pathbb(X, Y), edge(X, Z), pathbb(Z, Y). are generated.

Processing of the Query: For each adorned atom gα of the query, (1) the magic
seed magic(gα). is asserted, and (2) a rule g:- gα is produced. In our example we
generate magic pathbb(1, 5). and path(X, Y):- pathbb(X, Y).

The complete rewritten program consists of the magic, modified, and query rules.
Given a non-disjunctive datalog program P , a query Q, and the rewritten program P ′,
it is well known (see e.g. [7]) that P and P ′ are equivalent w.r.t. Q, i.e., P ≡Q,b P ′

and P ≡Q,c P ′ hold (since brave and cautious semantics coincide for non-disjunctive
datalog programs).

3 Magic-Set Method for Disjunctive Datalog Programs

In this section we present the Disjunctive Magic-Set algorithm (short. DMS) for the op-
timization of disjunctive datalog programs, which has been implemented and integrated
into the DLV system [4]. Before discussing the details of the algorithm, we informally
present the main ideas that have been exploited for enabling the Magic-Set method to
work on disjunctive programs.

3.1 Binding Propagation in Datalog∨ Programs: some Key Issues

As first observed in [13], while in nondisjunctive programs bindings are propagated
only head-to-body, any sound rewriting for disjunctive programs has to propagate bind-
ings also head-to-head in order to preserve soundness. Roughly, suppose that a pred-
icate p is relevant for the query, and a disjunctive rule r contains p(X) in the head.
Then, besides propagating the binding from p(X) to the body of r (as in the nondis-
junctive case), a sound rewriting has to propagate the binding also from p(X) to the
other head atoms of r. Consider, for instance, a Datalog∨ program P containing rule
p(X) v q(Y):- a(X, Y), r(X). and the query p(1)?. Even though the query propagates
the binding for the predicate p, in order to correctly answer the query, we also need

to evaluate the truth value of q(Y), which indirectly receives the binding through the
body predicate a(X, Y). For instance, suppose that the program contains facts a(1, 2),
and r(1); then atom q(2) is relevant for query p(1)? (i.e., it should belong to the magic
set of the query), since the truth of q(2) would invalidate the derivation of p(1) from
the above rule, because of the minimality of the semantics. It follows that, while prop-
agating the binding, the head atoms of disjunctive rules must be all adorned as well.

However, the adornment of the head of one disjunctive rule r may give rise to mul-
tiple rules, having different adornments for the head predicates. This process can be
somehow seen as “splitting” r in multiple rules. While this is not a problem in the
nondisjunctive case, the semantics of a disjunctive program may be affected. Con-
sider, for instance, the program p(X, Y) v q(Y, X):- a(X, Y). in which p and q are
mutually exclusive (due to minimality), since they do not appear in any other rule
head. Assuming the adornments pbf and qbf to be propagated, we might obtain rules
whose heads have the form pbf(X, Y) v qfb(Y, X) (derived while propagating pbf) and
pfb(X, Y) v qbf(Y, X) (derived while propagating qbf). These rules could support two
atoms pbf(m, n) and qbf(n, m), while in the original program p(m, n) and p(n, m) could
not hold simultaneously (due to semantic minimality), thus changing the original se-
mantics.

The method proposed in [13] circumvents this problem by using some auxil-
iary predicates which collect all facts coming from the different adornments. For in-
stance, in the above example, two rules of the form collect p(X, Y):- pfb(X, Y). and
collect p(X, Y):- pbf(X, Y). are added for predicate p. The main drawback of this
approach is that collecting predicates, while resolving the semantic problem, bloat the
program with additional rules reducing the gain of the optimization.

A relevant advantage of our algorithm (confirmed also by an experimental analysis)
is that we do not use collecting predicates; rather, we preserve the correct semantics
by stripping off the adornments from non-magic predicates in modified rules. Other
computational advantages come from our adornment technique, which is obtained by
extending non-disjunctive SIPS to the disjunctive case.

3.2 DMS Algorithm

The salient feature of our algorithm is that we generate modified and magic rules on
a rule-by-rule basis. To this end, we exploit a stack S of predicates for storing all the
adorned predicates to be used for propagating the binding of the query: At each step, an
element is removed from S, and each defining rule is processed at a time. Thus, adorned
rules do not have to be stored.

The algorithm DMS (see Figure 1) implements the Magic-Set method for disjunc-
tive programs. Its input is a disjunctive datalog program P and a query Q. Note that the
algorithm can be used for non-disjunctive rules as a special case. If the query contains
some non-free IDB predicates, it outputs a (optimized) program DMS(Q,P) consisting
of a set of modified and magic rules, stored by means of the sets modifiedRules(Q,P)
and magicRules(Q,P), respectively. The main steps of the algorithm DMS are illus-
trated by means of the following running example.

Example 1 (Strategic Companies [14]). We are given a collection C of companies pro-
ducing some goods in a set G, such that each company ci ∈ C is controlled by a set of

Input: A Datalog∨ program P , and a query Q = g1(t1), . . . , gn(tn).
Output: The optimized program DMS(Q,P).
var S: stack of adorned predicates; modifiedRules(Q,P),magicRules(Q,P): set of rules;
begin

1. if g1(t1), . . . , gn(tn) has some IDB predicate then
2. modifiedRules(Q,P):=∅; 〈S, magicRules(Q,P)〉:=BuildQuerySeeds(Q);
3. while S 6= ∅ do
4. pα:=S.pop();
5. for each rule r ∈ P : p(t) v p1(t1) v . . . v pn(tn):- q1(s1), . . . , qm(sm) do
6. ra:=Adorn(r,pα,S);
7. magicRules(Q,P) := magicRules(Q,P)

⋃
Generate(ra);

8. modifiedRules(Q,P) := modifiedRules(Q,P)
⋃

{Modify(ra)};
9. end for
10. end while
11. DMS(Q,P):=magicRules(Q,P) ∪ modifiedRules(Q,P);
12. return DMS(Q,P);
13. end if

end.

Fig. 1. Disjunctive Magic-Set Method

other companies Oi ⊆ C. A subset of the companies C ′ ⊂ C is a strategic set set if it
is a minimal set of companies producing all the goods in G, such that if Oi ⊆ C ′ for
some i = 1, . . . ,m then ci ∈ C ′ must hold. This scenario can be modelled by means of
the following program Psc.

r1 : sc(C1) v sc(C2):- produced by(P, C1, C2).
r2 : sc(C):- controlled by(C, C1, C2, C3), sc(C1), sc(C2), sc(C3).

Moreover, given a company c ∈ C, we consider a query Qsc = sc(c) asking whether
c belongs to some strategic set of C. 2

The computation starts in step 2 by initializing modifiedRules(Q,P) to the empty
set. Then, the function BuildQuerySeeds is used for storing in magicRules(Q,P) the
magic seeds, and pushing on the stack S the adorned predicates of Q. Note that we
do not generate any query rules, because the transformed program will not contain
adornments.

Example 2. Given the query Qsc = sc(c) and the program Psc, BuildQuerySeeds
creates magic scb(c). and pushes scb onto the stack S. 2

The core of the technique (steps 4-9) is repeated until the stack S is empty, i.e.,
until there is no further adorned predicate to be propagated. Specifically, an adorned
predicate pα is removed from the stack S in step 4, and its binding is propagated in
each (disjunctive) rule r in P of the form

r : p(t) v p1(t1) v . . . v pn(tn):- q1(s1), . . . , qm(sm).

with n ≥ 0, having an atom p(t) in the head (step 5).
Adorn. Step 6 performs the adornment of the rule. Different from the case of non-
disjunctive programs, the binding of the predicate pα needs to be also propagated to
the atoms p1(t1), . . . , pn(tn) in the head. We achieve this by defining an extension of
any non-disjunctive SIPS to the disjunctive case. The constraint for such a disjunctive
SIPS is that head atoms (different from p(t)) cannot provide variable bindings, they can

only receive bindings (similarly to negative literals in standard SIPS). So they should
be processed only once all their variables are bound or do not occur in yet unprocessed
body atoms.4 Moreover they cannot make any of their free-variables bound.

The function Adorn produces an adorned disjunctive rule from an adorned predicate
and a suitable unadorned rule by employing the refined SIPS, pushing all newly adorned
predicates onto S. Hence, in step 6 the rule ra is of the form

ra : pα(t) v p
α1

1 (t1) . . . pαn

n (tn):- q
β1

1 (s1), . . . , q
βm

m (sm).

Example 3. Consider again Example 1. When scb is removed from the stack, we first
select rule r1 and the head predicate sc(C1). Then, the adorned version is

r′1a

: scb(C1) v scb(C2):- produced by(P, C1, C2).

Next r1 is processed again, this time with head predicate sc(C2), producing

r′′1a

: scb(C2) v scb(C1):- produced by(P, C1, C2).

and finally, processing r2 we obtain

r2a
: scb(C):- controlled by(C, C1, C2, C3), sc

b(C1), sc
b(C2), sc

b(C3).

2

Generate. The algorithm uses the adorned rule ra for generating and collecting the
magic rules in step 7. Since ra is a disjunctive rule, Generate first produces a non-
disjunctive intermediate rule by moving head atoms into the body. Then, the standard
technique for Datalog rules, as described in Generation Step in Section 2, is applied.

Example 4. In the program of Example 3, from the rule r′1a

first its non-disjunctive
intermediate rule

scb(C1):- scb(C2), produced by(P, C1, C2).

is produced, from which the magic rule

magic scb(C2):- magic scb(C1), produced by(P, C1, C2).

is generated. Similarly, from the rule r′′1a

we obtain

magic scb(C1):- magic scb(C2), produced by(P, C1, C2).

and finally r2a
gives rise to the following rules

magic scb(C1):- magic scb(C), controlled by(C, C1, C2, C3).
magic scb(C2):- magic scb(C), controlled by(C, C1, C2, C3).
magic scb(C3):- magic scb(C), controlled by(C, C1, C2, C3).

2

4 Recall that the safety constraint guarantees that each variable of a head atom also appears in
some positive body-atom.

Modify. In step 8 the modified rules are generated and collected. The only difference
to the non-disjunctive case is that the adornments are stripped off the original atoms —
see Section 3.1. Hence, the function Modify constructs a rule of the following form

p(t) v p1(t1) v . . . v pn(tn) :- magic(pα(t)), magic(pα1

1 (t1)), . . . , magic(pαn
n (tn)),

q1(s1), . . . , qm(sm).

Finally, after all the adorned predicates have been processed the algorithm outputs the
program DMS(Q,P).

Example 5. In our running example, we derive the following set of modified rules:

r
′

1m
: sc(C1) v sc(C2):- magic sc

b(C1), magic sc
b(C2), produced by(P, C1, C2).

r
′′

1m
: sc(C2) v sc(C1):- magic scb(C2), magic scb(C1), produced by(P, C1, C2).

r2m
: sc(C):- magic scb(C), controlled by(C, C1, C2, C3), sc(C1), sc(C2), sc(C3).

where r′1m

(resp. r′′1m

, r2m
) is derived by adding magic predicates and stripping

off adornments for the rule r′1a

(resp. r′′1a

, r2a
). Thus, the optimized program

DMS(Qsc,Pcs) comprises the above modified rules as well as the magic rules in Ex-
ample 4, and the magic seed magic scb(c). 2

3.3 Query Equivalence Results

We conclude the presentation of the DMS algorithm by formally proving its soundness.
To this aim proofs in [13] cannot be reused, due to the many differences w.r.t. our
approach. The result is shown by first establishing a relationship between the minimal
models of the program DMS(Q,P) and of the program rel(Q,P) constructed as follows.

Given a set S of ground rules of P , we denote by R(S) the set {r ∈ ground(P) |
∃r′ ∈ S,∃q ∈ B(r′)∪H(r′) s.t. q ∈ H(r)}. Then, rel(Q,P) is the least fixed point of
the following succession rel0(Q,P) = {r ∈ ground(P) | ∃ground(q) ∈ Q ∩ H(r)},
and reli+1(Q,P) = R(reli(Q,P)), for each i > 0.

Notice that the correspondence between the models of DMS(Q,P) and of rel(Q,P)
can be established by focusing on non-magic atoms only. Thus, we next exploit the
following notation. Given a model M and a predicate symbol g, we denote by M [g] the
set of atoms in M whose predicate symbol is g. Then, M [P] denotes the set of atoms
in M whose predicate symbol appears in the head of some rule of P . Finally, given a
set of interpretations S, let S[g] = {M [g]|M ∈ S} and S[P] = {M [P]|M ∈ S}.

Lemma 1. Given a Datalog∨ program P , and a query Q. Then, it holds that ∀M ′ ∈
MM(DMS(Q,P)), and ∃M ∈ MM(rel(Q,P)) s.t. M = M ′[rel(Q,P)].

Lemma 2. Given a Datalog∨ program P , and a query Q. Then, it holds that ∀M ∈
MM(rel(Q,P)), and ∃M ′ ∈ MM(DMS(Q,P)) s.t. M = M ′[rel(Q,P)].

Armed with the above results, we can prove the following.

Theorem 1 (Soundness of the DMS Algorithm). Let P be a Datalog∨ program, let
Q be a query. Then, DMS(〈Q,P〉) ≡Q,b P and DMS(〈Q,P〉) ≡Q,c P hold.

Proof (Sketch). Let rel(Q,P) denote the set ground(P) − rel(Q,P). After lemmas
1 and 2, it suffices to prove that rel(Q,P) ≡Q,b P and rel(Q,P) ≡Q,c P . In fact,
we can show that ground(P) is partitioned into two modules (see definitions and nota-
tions in [2]), i.e., rel(Q,P) � rel(Q,P), that can be hierarchically evaluated. Thus,
the models of P are such that MM(P) =

⋃
M MM(M ∪ rel(Q,P)), for each

M ∈ MM(rel(Q,P)), where for the sake of simplicity, the model M is also used
for denoting the set of the corresponding ground facts in it.

The results follows by observing that for each predicate q in Q, MM(P)[q] =
(MM(P)[rel(Q,P)])[q]. In fact, we can show that MM(P)[rel(Q,P)] =
MM(rel(Q,P)). Then, it suffices to observe that for each predicate q in Q, the set
of ground rules having q in the head is in rel0(Q,P) ⊆ rel(Q,P). 2

4 Redundant rules: Prevention and Checking

Both the DMS method described above and APM of [13] have a common drawback:
Numerous redundant rules may be generated, which can deteriorate the optimization.
For instance, in Example 5 the first two modified rules coincide, and this might happen
even if the two head predicates differ. We stress that our rewriting algorithm already
drastically reduces the impact of such phenomena, as it does not introduce additional
predicates and rules (apart from magic rules). Nevertheless, since this aspect is crucial
for the optimization process, we next devise some strategies for further reducing the
overhead.

Let P be a disjunctive datalog program, and let r1 and r2 be two rules of P . Then,
r1 is subsumed by r2 (denoted by r1 v r2) if there exists a substitution ϑ for H(r2) ∪
B(r2), such that ϑ(H(r2)) ⊆ H(r1) and ϑ(B(r2)) ⊆ B(r1). Finally, a rule r1 is
redundant if there exists a rule r2 such that r1 v r2. Unfortunately, deciding whether a
rule is subsumed by another rule is a hard task:

Theorem 2. Let P be a disjunctive datalog program, and let r1 and r2 be two rules
of P . Then, the problem of deciding whether r1 v r2 is NP-complete in the number of
variables of r1 (program complexity). Hardness holds even for B(r1) = B(r2) = ∅.

The above result strongly motivates the design of methods for preventing the gener-
ation of redundant rules as well as of polynomial time heuristics for their identification.
The latter aspect is also of interest outside the context of the Magic-Set method.

4.1 Prevention of Redundant Rules

There are two typical situations in which redundant rules may be generated: (S1) when
adorning a disjunctive rule with two predicates having the same adornment and argu-
ments, and (S2) when adorning a rule with an adorned predicate, which stems solely
from a previous adornment of the same rule.

Example 6. (S1) Assume that the adorned predicates pb and sb are used for propagat-
ing the binding in the rule p(X) v s(X):- a(X). Then, both of the modified rules will
eventually result in s(X) v p(X):- magic sb(X), magic pb(X), a(X). 2

The source of the redundancy lies in the fact that disjunctive rules may be adorned
by two distinct predicates (sb and pb in the example) sharing the same bound variables.

Example 7. (S2) Consider the rule s(X, Z) v p(X, Y):- a(X), b(Y), c(Z). and the query
s(1, 2)?. By adorning with sbb we obtain the modified rule

r1 : s(X, Z) v p(X, Y):- magic sbb(X, Z), magic pbf(X), a(X), b(Y), c(Z).

and pbf is pushed onto the stack, which gives rise to

r2 : s(X, Z) v p(X, Y):- magic sbf(X), magic pbf(X), a(X), b(Y), c(Z).

which is not syntactically subsumed by nor subsumes r1.
Nonetheless, if pbf is generated only by the above rule, then r2 will add no sig-

nificant information as for the relevance of sbf, as it would propagate to sbf the same
binding it had received from predicate s itself. Conversely, if the predicate pbf is even-
tually generated by some other rules, then it must also be considered for adorning the
above rule, since it may provide additional new information. 2

Situation S1 is easy to implement: In the function Generate we add
a check whether the creation of the modified rule is necessary. Let r :
p1(t1) v ... v pn(tn):- q1(s1), . . . , qm(sm). be a disjunctive rule, and pα

i be an adorned
predicate that has already been used for generating the modified rule rm. Then, any
other adorned predicate pα′

j such that (i) pj has the same arguments of pi and (ii) each
argument of pi has the same adornment in α and α′, will generate for r a modified rule
r′m with r′m v rm.

This check can be implemented by storing for each adorned predicate the set of
rules it has already adorned, and it can be proven to be sound and complete.

Situation S2 requires more effort. It implies that an adorned predicate should not
always be applied to the whole program. To achieve this, we associate a target to each
adorned predicate. The first time a predicate pα is pushed on the stack, it is marked
for being used for adorning all the rules but the one that has generated it; this target
is termed allButSource. Then, if at a certain point pα is generated again, then two
situations may occur:

– if pα has been marked allButSource and already used for adorning the program
(hence has been removed from the stack), then the new predicate will be inserted in
the stack by marking it for adorning only the rule which was the source of the first
generation of pα (that has not been adorned yet); such a target is called onlySource.

– if pα has been not yet used, then it is simply marked for being used for adorning all
the program, giving rise to target all.

In the implementation we associate to each adorned predicate also the rule that gen-
erated it. Then, we modify step 6 in Fig. 1 as follows. A rule r considered for being
adorned with a predicate pα is actually adorned if and only if (i) the target of pα is
onlySource and r has generated the adornment pα, or (ii) the target of pα is allBut-
Source and r has not generated the adornment pα, or (iii) the target of pα is all.

Due to space limits, we omit the correctness proofs of the above solutions.

4.2 Identifying Redundant Rules

Even though the above strategies may significantly reduce the redundancy within the
rewritten program, we also exploit a (post-processing) technique for identifying those
redundant rules whose generation could not be prevented. Specifically, we implemented
a heuristic for rule subsumption checking that has been integrated into the core of the
DLV system, and that can be invoked to identify redundancy in any type of program.
The heuristic is based on the following observation.

Proposition 1. Let r1 and r2 be two disjunctive rules. Then, r1 subsumes r2 if and only
if there exists an ordering of all the atoms in H(r1)∪B(r1) of the form l1, . . . , lm and a
sequence of substitutions ϑ1, . . . , ϑm, such that for each li ∈ B(r1) (resp. li ∈ H(r1)),
there exists l′i ∈ B(r2) (resp. l′i ∈ H(r2)) with (ϑ1 ∪ . . . ∪ ϑi−1)(li) = {l′i}.

Roughly, we try to construct the sequence l1, . . . , lm of the above proposition and
the associated substitutions ϑ1, . . . , ϑm in an incremental way. At each step i, we
choose an atom li in r1 which has not yet been processed such that there exists a can-
didate l′i in r2 for being subsumed. Moreover, if many atoms in ri satisfy the above
condition, we greedily select the one which subsumes the maximum number of atoms,
and among these we prefer those with the maximum number of distinct variables not
yet matched.

5 Experimental results

5.1 Compared Methods, Benchmark Problems and Data

In order to evaluate the impact of the proposed methods, we compare DMS and ODMS
both with the traditional DLV evaluation without Magic-Sets and with the APM method
proposed in [13]. For the comparison, we consider the following benchmark problems
that have been already used to assess APM in [13] (see therein for more details):

– Simple Path: Given a directed graph G and two nodes a and b, does there exist a
unique path connecting a to b in G? The graph is the same as the one reported in
[13], and the instances are generated by varying the number of nodes.

– Ancestor: Given a genealogy graph storing information of relationship (fa-
ther/brother) among people and given two persons p1 and p2, is p1 an ancestor
of p2? The structure of the “genealogy” graph is the same as the one presented
in [13], and the instances are generated by varying the number of nodes, i.e., the
number of persons, in the graph.

– Strategic Companies: The problem has been formalized in Example 1. The in-
stances are generated according to the ideas presented in [13], by grouping the
companies in suitable clusters. Let G be the cluster such that c is in G. Then, the
instances are generated with |G| = 250, while the number of companies outside G

is varied.

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

200

number of nodes

ex
ec

ut
io

n
tim

e
[s

]

DMS
ODMS
APM

0 500 1000 1500 2000 2500
101

102

103

104

number of nodes

nu
m

be
r o

f r
ul

es
 [a

ct
ua

l g
ro

un
di

ng
]

DMS
ODMS
APM

Fig. 2. Simple Path: Execution time (Left) and Number of rules instances (Right)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

number of companies

ex
ec

ut
io

n
tim

e
[s

]

DMS
ODMS
APM
No Magic

5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14

16

number of non−redundant rules

ab
so

lu
te

 g
ai

n

100 facts

1:1
1:2
0

Fig. 3. Timing in Strategic Companies (Left) and Impact of subsumption checking (Right)

5.2 Results and Discussion

The experiments have been performed on Pentium III machines running GNU/Linux.
The DLV prototype used was compiled with GCC 2.95. For every instance, we have
allowed a maximum running time of 1800 seconds (half an hour) and a maximum mem-
ory usage of 256MB. On all problems, DMS outperforms APM, even without consid-
ering the time for the rewriting needed in [13], which is also not reported in the figures.

The results for Simple Path are reported in Figure 2. The diagram on the left shows
that DMS scales much better than APM on this problem and that ODMS provides addi-
tional speed-up. The main reason can be understood by looking at the right diagram, in
which the numbers of ground rules are reported: The overhead of the auxiliary rules for
APM is evident, it generates about 25 times more rules than DMS. We did not include
pure DLV (No Magic) in the diagrams, as it is dramatically slower; e.g. the instance
with 255 nodes takes about 195 seconds. Finally, the experimental results for Ancestor
are very similar to the ones for Simple Path.

On the left of Figure 3 we report the results for Strategic Companies. The advan-
tages of the Magic-Set method (in both implementations) are evident. Anyhow, we can
see that APM performs and scales worse than DMS, while ODMS provides even better
performance and scaling.

Finally, on the right of Figure 3, we report a more detailed analysis on the im-
pact of subsumption checking. In particular, we want to check whether the applica-
tion of subsumption checking is computationally heavy (how much performance gets

worse in a bad case where no redundant rule is identified). To this end, we test a
program with two types of rules, specifically ri : pi(X) v qi(X):- a(X), b(X). and
r′i : pi(X) v qi(X):- a(X)., where a and b are EDB predicates, and where each rule of
the form ri is subsumed by a rule of the form r′i.

We fix a database of 100 facts, and we report the gain, calculated as the difference
between the execution times of DLV without and with subsumption checking by vary-
ing the number of the rules of type ri.

We report three distinct runs: (0) when no redundancy is added, i.e., when there is no
occurrence of rules of type r′i, (1:1) when one redundant rule is added in correspondence
to one non-redundant one, i.e., when a rule of the form r′i occurs for each rule ri,
and (1:2) when for each pair of rules ri and ri+1 we insert only one occurrence of a
redundant rule, namely either r′i or r′i+1. Importantly, the experiments show that the
implementation is lightweight as in case (0) it does not deteriorate the performance of
DLV. Moreover, it is effective as it leads to a gain up to 3% for case (1:2) and up to
16% for case (1:1).

6 Related Work and Conclusions

The Magic-Set method is among the most well-known techniques for the optimiza-
tion of positive recursive Datalog programs due to its efficiency and its generality, even
though other focused methods, e.g. the supplementary magic set and other special tech-
niques for linear and chain queries have been proposed as well (see, e.g., [15, 7, 16]).

After seminal papers [8, 9], the viability of the approach was demonstrated e.g.
in [17, 18]. Later on, extensions and refinements have been proposed, addressing e.g.
query constraints in [10], the well-founded semantics in [11], or integration into cost-
based query optimization in [12]. The research on variations of the Magic-Set method is
still going on. For instance, in [19] a technique for the class of soft-stratifiable programs
is given, and in [13] an elaborated technique for disjunctive programs is described.

In this paper, we have elaborated on the issues addressed in [13]. Our approach is
similar in spirit to APM, but differs in several respects:

– DMS avoids the use of auxiliary predicates needed for APM, yielding a significant
computational benefit.

– DMS is a flexible framework for enhancements and optimizations, as it proceeds in
a localized fashion by analyzing one rule at time, while APM processes the whole
program at time.

– ODMS extends DMS by employing effective methods for avoiding the generation
of and for identifying still left-over redundant rules.

– ODMS has been integrated into the DLV system [4], profitably exploiting the DLV
internal datastructures and the ability of controlling the grounding module.

– We could experimentally show that our ODMS implementation outperforms APM
on benchmarks taken from the literature.

It has been noted (e.g. in [11]) that in the non-disjunctive case, memoing techniques
lead to similar computations as evaluations after Magic-Set transformations. Also in
the disjunctive case such techniques have been proposed, e.g. Hyper Tableaux [20],
for which a similar relationship might hold. However, we leave this issue for future

research, and follow [11] in noting that an advantage of Magic-Sets over such methods
is that they can be more easily combined with other database optimization techniques.

Concerning future work, our objective is to extend the Magic-Set method to the case
of disjunctive programs with constraints and unstratified negation, such that it can be
fruitfully applied on arbitrary DLV programs. We believe that the framework developed
in this paper is general enough to be extended to these more involved cases.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9 (1991) 365–385

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22 (1997) 364–418
3. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV

System. In Minker, J., ed.: Logic-Based Artificial Intelligence. Kluwer (2000) 79–103
4. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV Sys-

tem for Knowledge Representation and Reasoning. ACM TOCL (2004) To appear. Available
via http://www.arxiv.org/ps/cs.AI/0211004.

5. Janhunen, T., Niemelä, I., Simons, P., You, J.H.: Partiality and Disjunctions in Stable Model
Semantics. In: KR 2000, April 12-15, Morgan Kaufmann (2000) 411–419

6. Arieli, O., Denecker, M., Van Nuffelen, B., Bruynooghe, M.: Database repair by signed
formulae. In: FoIKS 2004. LNCS 2942., Springer (2004) 14–30

7. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer Science Press
(1989)

8. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to
Implement Logic Programs. In: PODS’86. (1986) 1–16

9. Beeri, C., Ramakrishnan, R.: On the power of magic. JLP 10 (1991) 255–259
10. Stuckey, P.J., Sudarshan, S.: Compiling query constraints. In: PODS’94, ACM Press (1994)

56–67
11. Kemp, D.B., Srivastava, D., Stuckey, P.J.: Bottom-up evaluation and query optimization of

well-founded models. Theoretical Computer Science 146 (1995) 145–184
12. Seshadri, P., Hellerstein, J.M., Pirahesh, H., Leung, T.Y.C., Ramakrishnan, R., Srivastava,

D., Stuckey, P.J., Sudarshan, S.: Cost-based optimization for magic: Algebra and implemen-
tation. In: SIGMOD Conference 1996, ACM Press (1996) 435–446

13. Greco, S.: Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. IEEE TKDE 15 (2003) 368–385

14. Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query Language. IEEE TKDE 9 (1997)
448–463

15. Greco, S., Saccà, D., Zaniolo, C.: The PushDown Method to Optimize Chain Logic Programs
(Extended Abstract). In: ICALP’95. (1995) 523–534

16. Ramakrishnan, R., Sagiv, Y., Ullman, J.D., Vardi, M.Y.: Logical Query Optimization by
Proof-Tree Transformation. JCSS 47 (1993) 222–248

17. Gupta, A., Mumick, I.S.: Magic-sets Transformation in Nonrecursive Systems. In: PODS’92.
(1992) 354–367

18. Mumick, I.S., Finkelstein, S.J., Pirahesh, H., Ramakrishnan, R.: Magic is relevant. In:
SIGMOD Conference 1990. (1990) 247–258

19. Behrend, A.: Soft stratification for magic set based query evaluation in deductive databases.
In: PODS 2003, ACM Press (2003) 102–110

20. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: JELIA’96. LNCS 1126,
Springer (1996) 1–17

