The DLV Project: A Tour from Theory and Research
to Applications and Market*

Nicola Leone and Wolfgang Faber

Department of Mathematics, University of Calabria, 87036 Rende, (€8)
{l eone, faber }@mat . unical .it

Abstract. DLV is one of the most succesful and widely used ASP systems. It
is based on stable model semantics, and supports a powerful langxtagding
Disjunctive Logic Programming with many expressive constructs, imetueg-
gregates, strong and weak constraints, functions, lists, and sets. pagiEs we
describe the long tour from basic research on languages and semsiuiitiss

on algorithms and complexity, design and implementation of prototypes, up to
the realization of a powerful and efficient system, which won the last AG®-
petition, is employed in industrial applications, and is even ready for rtiagke
and commercial distribution. We report on the experience we got in thare
twelve years of work in the DLV project, focusing on most recent dguralents,
industrial applications, trends, and market perspectives.

1 Introduction

Disjunctive Logic Programming [1] under the stable modehaatics [2, 3] (DLP,
ASP) is a powerful formalism for Knowledge Representation anéd®aing. Dis-
junctive logic programs are logic programs where disjwrcis allowed in the heads of
the rules and negation may occur in the bodies of the rulegubstive logic programs
under stable model semantics are very expressive: they ado express, in a precise
mathematical senseyery property of finite structures over a function-free first@rd
structure that is decidable in nondeterministic polyndrimae with an oracle in NP
[4]. The high knowledge modeling power of DLP has implied aenged interest in
this formalism in the recent years, due to the need for reptesy and manipulating
complex knowledge, arising in Artificial Intelligence andather emerging areas, like
Knowledge Management and Information Integration.

In this paper, we overview the DLV project, which has beetivadbor more than
twelve years, and has led to the development of the DLV systéine state-of-the-art
implementation of disjunctive logic programming. DLV isdely used by researchers
all over the world, and it is competitive, also from the vievrg of efficiency, with
the most advanced ASP systems. Indeed, at the First Answédtr8gramming Sys-
tem Competition [5], DLV won in the Disjunctive Logic Programming category. And

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni detagrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresemntazith conoscenza:
estensioni e tecniche di ottimizzazione.”

1 ASP stands for Answer Set Programming, with answer-set being amatlte name for
stable-model, which is more frequently used than the latter today.

2 See also http://asparagus.cs.uni-potsdam.de/contest /.

DLV finished first also in the general category MGS (Modeli@gpunding, Solving
— also called royal competition, which is open to all ASP epss). Importantly, DLV
is profitably employed in many real-word applications, aad ktimulated quite some
interest also in industry (see Section 7). The key reasarthéssuccess of DLV can be
summarized as follows:

Advanced knowledge modeling capabilitiesDLV provides support for declarative
problem solving in several respects:

— High expressiveness of its knowledge representation kEgguextending disjunc-
tive logic programming with many expressive constructgjuding aggregates,
weak constraints, functions, lists, and sets. These agtstnot only increase the
expressiveness of the language; but they also improve isvliedlge modeling
power, enhancing the usability in real-world contexts.

— Full declarativeness: ordering of rules and subgoals isatenal, the computation
is sound and complete, and its termination is always gueeahnt

— A number of front-ends for dealing with specific Al appliaats [6—9], information
extraction [10], Ontology Representation and Reasoniagl2].

Solid Implementation. Much effort has been spent on sophisticated algorithms and
techniques for improving the performance, including

— Database optimization techniques: indexing, join ordgmmethods [13], Magic
Sets [14, 15].
— Search optimization techniques: heuristics [16—18], uanking techniques [19,
20], pruning operators [21].
DLV is able to solve complex problems and can deal with daterisive applications
by evaluating the program in mass-memory on a language s[#2523].

Interoperability. A number of powerful mechanisms have been implemented davall
DLV to interact with external systems:

— Interoperability with Semantic Web reasoners: DLVHEX [24]

— Interoperability with relational DBMSs: ODBC interfaceq,22].

— Calling external (C++) functions from DLV programs: DLVE2R§].
— Calling DLV from Java programs: Java Wrapper [27].

In the following, we report on the long tour which has led te LV system imple-
mentation, focusing on most recent developments, indlstgplications, trends, and
market perspectives.

2 Ancestry

Probably the earliest relevant roots of DLV are to be founth&n1950ies, when Mc-
Carthy proposed the use lagical formulas as a basis for a knowledge representation
language [28, 29]. It was soon realized, however, that idaklegic is not always ade-
quate to model commonsense reasoning [30]. As an alteepdttivas been suggested

to represent commonsense reasoning using logical langwetfenonmonotonic con-
sequence relations, which allow new knowledge to invadidaime of the previous con-
clusions. This observation has led to the development arekfigation of new logi-

cal formalisms, nonmonotonic logics, on which nonmonatdogic programming has
been based.

In the 1980ies, Minker proposed Disjunctive Logic Prograngr{DLP) [1], which
allows for disjunctions instead of just atoms in rule hegitdding (in general) a more
expressive language. Early methods for implementations been proposed already in
the book by Lobo, Minker, and Rajasekar [31]. In the early(i®8 nonmonotonic and
disjunctive logic programming have been succesfully metigehe semantic proposals
by Gelfond and Lifschitz [3] and Przymusinski [32], callethSle Model Semantics,
and yielding what is today known as Answer Set Programmir§R)& Stable Logic
Programming, ASP-Prolog, or simply Disjunctive Logic Pra@gming (DLP).

After a few early attempts on implementing DLP [33-35], tbarfidation of what
would become the DLV system was laid in the seminal works B&] [37]. These
articles essentially contain an abstract description @btisic DLV algorithm.

3 Implementing the Core System

The core system of DLV works on a set of disjunctive rules, ckuses of the form
aiv---vay:- by,--- ,bg,not byyq,--- ,not by,

where atomsiy, ..., a,, by, ..., b, may contain variables and eachrafk, m may be
0. If n = 0, then the clause is referred to as an integrity constragnthe empty head
acts like falsity. Ifn = 1 andk = m = 0, the rule is referred to as a fact, and for facts
.- is usually omitted. The intuitive reading of such a rule i&dll b4, ..., b, are true
and none oby.1, ..., b, is true, then at least one atoman, . . ., a,, must be true.”
Additionally, there is a stability criterion [2, 3], whicHsm implies minimality of truth.
Disjunctive logic programming is strictly more expresdivat disjunction-free logic
programming, it can represent some problems which cannenbeded in OR-free
programs, and cannot be translated even to SAT in polyndimial We next show an
example of a problem, callestrategic companies, where disjunction is strictly needed.

Example 1. Suppose there is a collectioh= {cy, ..., ¢, } of companieg; owned by
a holding, a se& = {q,..., g, } of goods, and for eacty we have a set7; C G of
goods produced by; and a seD; C C of companies controlling (owning),. O; is
referred to as theontrolling set of ¢;. This control can be thought of as a majority in
shares; companies not @, which we do not model here, might have shares in compa-
nies as well. Note that, in general, a company might have tihareone controlling set.
Let the holding produce all goods #, i.e. G = Uciec G;.

A subset of the companigs’ C C is aproduction-preserving set if the following
conditions hold: (1) The companies@ produce all goods i, i'e"Uc,-EC’ G; =G.

3 Stable Models are also called Answer Sets, and we will often use the latter whith is
more frequently used today.

(2) The companies it are closed under the controlling relation, i.eOif C C” for
some: = 1,...,mthenc; € C’ must hold.

A subset-minimal se€”, which is production-preserving, is called astrategic set.
A companye; € C'is calledstrategic, if it belongs to some strategic set©f

In the following, we adopt the setting from [38] where eacbdarct is produced
by at most two companies (for eaghe G |{¢; | g € G;}| < 2) and each company
is jointly controlled by at most three other companies,|ig] < 3fori =1,...,m
(in this case, the problem is stifl{’-hard). For a given instance of STRATCOMP, the
program will contain the following facts:

— company(c) for eachc € C,

— prod-by(g, cj,ci), if {¢; | g € Gi} = {¢;j, e}, wherec; and e, may possibly
coincide,

— contr_by(c;, Cky Cm,), if ¢; € CandO; = {cg, cm, cn }, Wherecy, ¢, ande,
are not necessarily distinct.

Given this instance representation, the problem itselfozarepresented by the fol-
lowing two rules:

sl strat(Y)vstrat(Z):- prodby(X,Y, 7).
s2: strat(W) :- contr_by(W, X, Y, Z), strat(X), strat(Y'), strat(Z)

Herestrat(X) means that company is a strategic company.
DLV today can solve instances with thousands of companiesasonable time.

The main tasks for computing a DLP program in a (by now) tylpizahitecture
are eliminating variables by instantiatiogr¢unding), creating candidate answer sets
(generation), and finally checking their stabilitychecking). It is worthwhile noting that,
due to the higher expressiveness of DLP, the (stabitityrking is a co-NP-complete
task for disjunctive programs, while it is polynomially dwe for OR-free programs.

In November 1996 the DLV project started in Vienna, its gaahlg the production
of a performant system for computing answer sets of disjumdbgic programs. A
working system was produced fairly quickly, and the firstalgdion of the system was
presented at LPNMR 1997 [39]. The basic architecture of yis¢esn as presented in
that paper stands until today more or less unchanged. Ther jgégo introduced the
grounding module, which proved to be a strong componentesistem. Along with
the basic model generator, it also described the model endakkey module which is
not needed for dealing with nondisjunctive programs) amibua forms of dependency
graphs.

The following major publication about the system was at KR8 §40], in which
the newly created front-ends (brave and cautious reasovanigus forms of diagnostic
reasoning, and a subset of the then-unpublished SQL-3 8§1£98) language (see also
Section 4), which allows for recursion in SQL. Another maieds of this work were
the benchmarks. DLV was compared to two of the most compestystems of the era,
Smodels [41] (as yet without Lparse) and DeReS [42], andddarbe competitive.

The computational core modules of DLV continued to be impth\A major step
was the move to a more goal-oriented computation, by intimgdua new truthvalue

or atom class named “must-be-true” [43] together with aadlét heuristic. These fea-
tures proved to boost the system’s performance on many beanls. In fact, work on

tuning the heuristics has been continued ever since, gigegto a number of signif-

icant improvements [16, 44, 45]. Other enhancements of théefrgenerator were the
comparison of various pruning operators [46, 21] employ&ihd model construction,
which also yields considerable performance gains on cekiads of problem.

Also DLV’s model checker has been improved by introducingea,nightweight
technique which permits the use of a SAT solver to decide imstdbility [47]. It has
been shown that the introduction of this technique signitigamproves performance
on the hardest¥(,’-complete) problems that DLV can handle in a uniform way.

The grounding module is a very important part of DLV, as ondhe hand it solves
a difficult problem and on the other hand it should output agpm that is as small
as possible, as the efficiency of all subsequent computatiolh in general depend
on this size. Thus, grounding optimizations are very imgarand often have a pro-
found impact on the overall system performance, cf. [4820317]. The enhancement
of grounding by “porting” optimization techniques from agbnal databases to DLP,
has been one of the most effective improvements of DLV forneald applications.

4 Language Extensions and their Optimization

Early on, extensions of the basic language were a main fob@Lv. The first of

these was the introduction of support for brave and cautipesy answering, first de-
scribed in [49]. In nonmonotonic reasoning, these are tloenhajor modes for answer-
ing queries. In DLV, a program with a query is transformed amprogram the structure
and meaning of which depends on the reasoning mode. Anstgeargethen computed
for the transformed program: For brave reasoning, eachersst supports the truth of
the query, while for cautious reasoning, an answer set idreess for the falsity of the

query.

Example 2. In order to check whether a companys strategic in Example 1, one can
write a querystrat(c)?. Brave reasoning on this query decides whethisrstrategic,
while cautious reasoning decides wheth& contained in each strategic set.

For query evaluation, an adaption of the Magic Sets methdffagments of) the
DLV language has been introduced as an optimization [15,THé basic idea is to
make the process more query oriented, and consider onlygeéat of the program
which is sufficient to answer the query. In addition, if camgs are present in the query,
this optimization attempts to minimize also the rule ingtions to those that are nec-
essary to answer the query correctly.

The introduction of weak constraints [50, 51] was the nexjomianguage exten-
sion. A weak constraint is a construct of the form

i~ by, b, ot bigq, - o, 006 by Jw]

where form > k > 0, by,...,b,, are atoms, whilev (the weight) and! (the level)
are positive integer constants or variables occuringy in. ., b,,. For conveniencey

and/orl might be omitted and are set to 1 in this case. The idea is tbakwonstraints
should preferably be satisfied, with the weight and levetgpieg a penalty in case a
weak constraint is not satisfied. Basically, for each ansgewe can associate a vector
of weights, which are the sum of weights of unsatisfied weaistaints of a specific
level. Optimal answer sets are then selected by first chgdkose answer sets having
the least weight for the highest level, among these thosegdve least weight for the
next highest level and so on (that is, the optimum of a lexiaphical ordering).

Example 3. For instance, if one wants to avoid scenarios in which comypas con-
tained in a strategic set (and thus be bound to sold), we nhg ackak constraint

i~ strat(c). [1:1]

in this way, if strategic sets exist which do not contajithen only those will be com-
puted. However, this is a preference criterion: if theresesxno one missing, then the
other answer sets will be anyway computed.

Having weak constraints actually increases the exprassszeof the language and
incurred some fairly crucial modifications of the core sgsté&or instance, the model
generator potentially is activated twice in the presence/@dik constraints: Once for
determining the optimal value of answer sets and a secors fdimenumerating the
optimal answer sets.

Especially with the advent of data-intensive applicatjanisecame clear that some
interface to databases is necessary, as extracting datasfrdatabase and putting it
into a temporary text file is not a very practical option. Afiatial trials with propri-
etary interfaces, eventually an ODBC interface has beeriged, which abstracts from
the actual database used, and allows for both importing id@ta from and exporting
answer set data to an external database.

A major language extension was the introduction of aggesgfi2]. Aggregate
atoms consist of an aggregation function (currently oneanflioality, sum, product,
maximum, minimum), which is evaluated over a multiset ofrter which are deter-
mined by the truthvalues of standard (non-aggregate) atbhessyntax is

L <y F{Vars: Conj} <2 U

whereF is a function#count, #min, #max, #sum, #times, <1, <2€ {=, <, <,>
,>1},andL andU, the guards, are integers or variables.

Intuitively, a symbolic sef X,Y :a(X,Y),not p(Y)} stands for the set of pairs
(X,Y) making the conjunctior(X,Y),not p(Y) true, i.e.,5 = {(X,Y) | 3Y such
that a(X,Y") A not p(Y) is true}. When evaluating an aggregate function over it, the
projection on the first elements of the pairs is considerddchvyields a multiset in
general. The value yielded by the function application isipared against the guards
in order to determine the truth value of the aggregate. DLe® with full support for
non-recursive aggregates, as described in [52]. To thisspetialized data structures
were introduced, and the model generation algorithm wasifgigntly enhanced in
order to deal with aggregates.

In presence of recursion through aggregates, special€aexied for defining the
semantics of aggregates.

Example4. Consider a(1):- #count{X:a(X)} < 1.
we see that in this examplg1) can be true only if2(1) is false. Therefore, any an-
swer set containing(1) should not include:z(1), and any answer set not containing
a(1) should includez(1), which are both infeasible conditions and therefore no answ
should exist for this program.

However, looking at a(1):- #count{X:a(X)} > 0.
intuitively, a(1) can become true only if(1) is true, which would thus be a self-support
for a(1). One would expect that in any answer gét) is false.

In a way, the first program behaves just likd) : - not a(1). while the second one
is like a(1):- a(1). Thus, “easy” approaches treating aggregate atoms liketimega
atoms are bound to give incorrect results on programs suttfeasecond.

In [53, 54] a semantics has been presented, which deals hatietissues in a sim-
ple, but effective way. Later, in [55, 56], characterizaioof this semantics using an
adapted version of unfounded sets has been presented, peveld the way for a rea-
sonable implementation for recursive aggregates. Cuyrenspecial version of DLV
exists, which supports an ample class of programs with sa@iaggregates under this
semantics. This will eventually be integrated in the mastrdiution of DLV.

The latest extension of DLV language is the addition of fiong, lists, and sets,
along with a rich library of built-in functions for their maulation [57]. This is a
very relevant extension, which lifts up the expressive powfehe language allowing
to encode any computable function. Even if the integratiothe main distribution of
DLV is under development, this extension is already sprewtisaiccesfully used in
many universities and research institutes.

5 Frontends, Backends and Research-Applications

DLV has been succesfully integrated as a computationaherigisystems which use it
as an oracle, usually acting as frontends and/or backerdsVo Also the implemen-
tation of brave and cautious query answering described d@tidde4 can be viewed as
such a frontend, but since it seamlessly integrates inttatiguage we have described
it as a language extension.

The first major frontend was the diagnosis frontend [6], whgnow integrated into
the DLV distribution. It supports various modes of abdugetiand consistency-based
diagnosis by transforming the input into a DLV program anttaeting the diagnoses
of the answer sets. Later, also diagnosis with penalizg8pras been studied and
implemented using DLV.

The second frontend which became included in the DLV digtiiim supported ob-
ject programs which can be linked via inheritance conssiat described in [58]. Also
this could be viewed as a language extension by considerogggms not in any object
as belonging to a special, isolated object. Also in this thasénput is transformed into
a standard DLV program and the resulting answer sets areedeaf the intermediate
symbols introduced by the translation.

4 We refrain from providing further details, since the paper describingetension of DLV
with functions is reported in this book.

The last major frontend to be included into the DLV distribntwas the support
for finding plans for domains formulated in the action lamgri& [59, 7, 60]. In this
case, the interaction with DLV is somewhat more complex, @alsd the extraction of
plans from answer sets is slightly more involved than in thatends discussed so far.

There are several other systems which wrap around DLV; a faWwese can also
use other ASP systems in place of DLV.

There are actually two such systems for ASP with preferengbere the prefer-
ences are expressed between rules. The sysitgnic1] transforms these programs into
a standard ASP program and extracts the preferred answgdratthe answer sets of
the transformed program. A different approach has beerepted in [62], which uses
a metainterpretation technique. In this context, this re¢hat the propositional atoms
of the preference programs become terms in the transfornogggm, where the exten-
sional database defines the program structure and an ioteh§ixed part characterizes
the semantics.

The systenml p is an implementation for computing answer sets for prognaitis
nested expressions, which relax the structural requirésrfienconnectors occurring in
rules [63]. Also here the program with nested expressiotmisformed, introducing
several intermediate predicates on the way, which areifiitred from the output.

The system A-POL provides a solver for programs with padider constructs by
transforming them to standard DLV programs [64].

A major endeavor and interdisciplinary success has beecotinging between An-
swer Set Programming and Description Logic. SysiuR- DL [65, 66] uses DLV on
its ASP side. It turned out that for certain tasks DLV can gerf much better than
Description Logic systems in this sort of coupling.

DLV has also been used inside a system for strong equivatestiag and associ-
ated program simplification [67]. Also in this case, it isdiss a backend for deciding
whether some rule is redundant or can be simplified.

Two systems have been devised which work on action desamipti the language
K and on plans, one for monitoring plan execution (KMonit@$][and another one
which diagnoses plan execution failures (KDiagnose) [88pther system implements
query answering on action descriptions (AD-Query) [70].dkthese systems use DLV
for solving various computational tasks arising duringrtie&ecution.

Recently, a system for Answer Set Optimization [71] has hemsented, which
handles programs with preferences expressed among atather(than rules as for
pl p described earlier). In this case, DLV is used for produciagdidate answer sets,
which are then tested for optimality by other software.

Finally, we mentiorspock, a system for debugging ASP programs [72, 73], which
may be configured to use DLV as its computational core.

6 Spin-Off Projects

Several projects have spun off DLV over the time. A fairlylgane was the DLV Java
wrapper, described in [27]. Since industrial applicatiefs Section 7) are frequently
developed in a Java environment, some means had to be fountbtact with DLV

from Java. The DLV Java wrapper project provides interfaaédch are in some way

inspired by ODBC or JDBC. They allow for creating DLV progranpassing them to
DLV, invoking DLV and getting back and analyzing the answetssproduced. This
software has been succesfully applied in industrial sgitolescribed in Section 7.

DLVT [74] is a project which enhances DLV by so-called tenteta These tem-
plates can be viewed as abstractions for programs, whichhesmbe used by instan-
tiating them for a particular setting. The semantics foistheonstructs is defined by
expanding the respective templates, and allows for mogutagramming in DLV.

Again experiences with industrial applications motivated creation of DLVEX
[26]. The main observation was that it is often necessaryelegate certain compu-
tational tasks in programs to functions evaluated outsfdBld/’s proper language.
This requirement arises because ASP is not well-suiteddidain tasks such as string-
handling, various numeric computations and similar fezguMoreover it allows for
easy language extensions, the idea being to define a sustlentics for a generic ex-
tension, the semantics for a particular extension thengbaitomatically provided by
the generic definition. It can also be seen as an easy megm®fading new data types
and associated operations. Several libraries have altestyprovided for DLVEX, in-
cluding numeric operations, string handling, manipulatbbiological data, and more.
It is planned that these features will be merged into stahBdV in the near future.

A system which is similar in spirit is divhex [24], which alsdlows for external
calls. However, while DLVEX is situated at the groundingdkvn divhex these exter-
nal predicates may be evaluated at an arbitrary stage obtheutation. For instance,
the truthvalue of an atom may be determined by the answelatRsscription Logic
reasoner provides for a query, where the state of the Deistripogic reasoner itself
may be determined by the truthvalue of atoms occurring indtlieex program. This
project has received a lot of attention by the Semantic Wefneonity.

A spin-off of DLV which seems very attractive for real-worgbplications, where
large amount of data are to be dealt withDis/ PZ. The basic idea undelyingLv ?5
[23,22] is to create a close interaction between DLV andlietas, delegating some
computational tasks to the database engine. The motivtitivat if some data is ob-
tained from a database anyway, it might be more efficientdsae on it directly where
it resides; this becomes particularly important if the date does not fit main memory
(which is a typical case in real world applications). Moreguf input data is spread
over different databasebLvV ”? provides suitable constructs to reason on them trans-
parently. Finally, as many database engines give the plitysib attach stored function
calls to queriespLv”? allows for attaching such function calls to declarative-pro
grams, allowing for solving procedural sub-tasks direotiythe database.

Essentially forming a language extension, a system foratiog parametric con-
nectives [75] in the language of DLV has been implemented¢hvshould eventually
be integrated into regular DLV. Parametric connectivemnafior dynamically creating
disjunctions and conjunctions during grounding. This igeesally useful if one does
not know in advance which or how many options there will be padicular instance
of a program. For instance, for the well-known 3-colorapitiroblem it is known in ad-
vance that there are exactly three colors available, ancanexploit this knowledge
for writing a concise program that includes a disjunctiovoiming the three colors.
When one is interested in n-colorability instead, one cammité a similar disjunction,

as it depends on the problem instance how many colors wilaiedle. With paramet-
ric disjunctions, this can be done as the disjunction wildgaamically created based
on the extension of some predicate. The following progranodes n-colorability by
means of parametric disjunction:

VA{col(X,C) : color(C)} :- wvertex(X)
1= col(X,0),col(Y,C),edge(X,Y), X #Y

A project for improving runtimes of basic DLV is to endow theodel generator
with a reason calculus and backjumping [19]. These teclasigue quite well-known
in SAT solving, and in this project those methods have beersiderably adapted to
suit the ASP world, and the DLV system in particular. It hagrbshown that these
techniques are beneficial with respect to runtime, and thkyewentually be included
in mainline DLV.

Based on the reason calculus discussed above, anothergjéetjhas been estab-
lished that defines VSIDS-like heuristics for ASP, and DL \particular [76]. This kind
of heuristics tries to look back on the computation and galudgces based on previous
experiences. Standard DLV does the opposite, it looks abgaerforming a tentative
computational step and analyzing the output. Eventually glanned to integrate also
this kind of heuristics into DLV.

A recent effort to improve the scalability of DLV has been thegrallelization of
DLV'’s grounding module [77]. The original implementatiorag/sequential, but con-
ceptually the grounding procedure has potential for palrplocessing. The implemen-
tation is done having a multiprocessor machine with sharechany in mind.

7 Industry-level Applications and Commerce

Unlike many other ASP systems, DLV has a history of applaation the industrial
level. An important application area, in which DLV has beewrcesfully applied, is
Information Integration. The European Commission fundgmaect on Information
Integration, which produced a sophisticated and efficiatd thtegration system, called
INFOMIX, which uses DLV at its computational core [78]. Thevgerful mechanisms
for database interoperability, together with magic sefs 4] and other database op-
timization techniques [13, 79], which are implemented inDmake DLV very well-
suited for handling information integration tasks. And DN INFOMIX) was succes-
fully employed in an advanced real-life application, in efhidata from various legacy
databases and web sources must be integrated for the infonsgstem of the Univer-
sity of Rome “La Sapienza”.

The DLV system has been experimented also with an applicéioCensus Data
Repair [80], in which errors in census data are identified @rahtually repaired. This
application includes a formalization of error models angdthetical reasoning on pos-
sible repairs. DLV has been employed at CERN, the Europeboriatory for Particle
Physics, for an advanced deductive database applicaintiolves complex knowl-
edge manipulation on large-sized databases. The PolispaignmRodan Systems S.A.
has exploited DLV in a tool for the detection of price mangiidns and unauthorized
use of confidential information, which is used by the Poliglti8ities and Exchange

Commission. In the area of self-healing Web Sendidbe most recent extension of
DLV with function symbols is succesfully exploited for ingshenting the computation
of minimum cardinality diagnoses [81]. Function symbols amployed to replace ex-
istential quantification, which is needed to model the exisé of values in case the
semantics of Web Services is unknown, e.g., because oY faeltaviors.

Thanks to the high expressivity of the language and to ifd soplementation DLV
has been attractive for many other similar applicationavéler, the most valuable ap-
plications from a commercial viewpoint are those in the arfeKnowledge Manage-
ment, which have been realized by the company EXEURA swith, the support of the
DLVSYSTEM s.r.l. (see below).

The experience gained in these real-world settings confiptans to promote DLV
also commercially. To this end, the key people involved inCfbunded the company
DLVSYSTEM s.r.l. in September 2005. This company is locate@alabria, Italy, and
its main goal is to license DLV to interested partners in stduas well as to provide
consultancy and support for its use in an industrial context

The main licensee so far has been EXEURA, a spin-off companiieoUniver-
sity of Calabria having a branch also in Chicago, which esiterty uses DLV in its
Knowledge Management (KM) products. Three main induspratotypes of Exeura,
currently in production, are strongly based on DLV: OntoDOlex, and HiLeX.

OntoDLV is a system for ontology specification and reasoning [82, Th¢ sys-
tem supports a powerful ontology representation langueagked OntoDLP, extending
Disjunctive Logic Programming with all the main ontologyafares including classes,
inheritance, relations, and axioms. OntoDLP is strongpet; and includes also com-
plex type constructors, like lists and sets. ImportantiptdLV supports powerful
rule-based reasoning on ontologies, by incorporating th¥ Bystem. The semantic
peculiarities of DLP, like the Closed World Assumption (CY\#nd the Unique Name
Assumption (UNA), allow to overcome some limits of OWL, maki®ntoDLV very
suitable for Enterprise Ontologies. It is worth noting t@ettoDLV supports a powerful
interoperability mechanism with OWL, allowing the user ttrieve information from
OWL ontologies, and build rule-based reasoning on top of OWblogies. Moreover,
through the exploitation abLv”Z, OntoDLV is able to deal also with data-intensive
applications, by working in mass-memory when main memomoassufficient. The
system is already used in a number of real-world applicationluding agent-based
systems, information extraction, and text classification.

HiLeX [10] supports a semantic-aware approach to informatioraetion from
unstructured data (i.e., documents in several formats, lgml, txt, doc, pdf, etc). In
HiLeX information extraction is “Ontology driven”, and elqits a domain description
expressed through an OntoDLP ontology. A pre-processiag@lransforms the input
document in a set of logical facts, extraction patternsewgitten into logical rules, and
the whole process of information extraction amounts to @ns&t computation, which
is carried out by the DLV system. The HiLex system has beenesiually applied for
the extraction of clinical data (stored in flat text formatlialian language) from an
Electronic Medical Record (EMR), and for the extraction afalfrom balance sheets.

5 http://wsdiamond.di.unito.it

Olex is a rule-based system for text classification [83, 84]. Rygyiven an on-
tology of the domain, Olex assigns each input document teldeses of the ontology
which are relevant for it (by recognizing and analyzing tbaaepts treated in the doc-
ument). For instance, Olex can automatically classify ANf#&vs according with their
contents (Sport, Economy, Politics, etc.). Olex classifame learned automatically in
a “training phase”, and expressed by DLP rules. The docuitiassification process
amounts to answer set computation, which is performed bipthé system. Olex has
been succesfully applied in a number of real world applicetiin various industries
including health-care, tourism, and insurance.

Exeura is currently concentrating its efforts on the impamation of a data-mining
suite, where DLV will be employed for reasoning on top of tesuits of data mining.

References

1. Minker, J.: On Indefinite Data Bases and the Closed World AssumplienCADE’82.
LNCS 138, New York, (1982) 292-308
2. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic g?eanming. In:
ICLP/SLP 1988, Cambridge, Mass., MIT Press (1988) 1070-1080
3. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs Bigjunctive Databases.
NGC9 (1991) 365-385
4. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TORZ3) (1997) 364-418
5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schawy@ruszczyski, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS3448007) 3-17
6. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The Diagnosis tena of thedl v System. Al
Communicationd 2(1-2) (1999) 99-111
7. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Aicd@grogramming Approach to
Knowledge-State Planning, II: the DISystem. Al144(1-2) (2003) 157-211
8. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.. Aas®et Planning under Action
Costs. In: JELIA 2002. LNCS 2424, Cosenza, Italy (2002) 186-197
9. Perri, S., Scarcello, F., Leone, N.: Abductive Logic Prograritis Renalization: Semantics,
Complexity and Implementation. TPL3¢1-2) (2005) 123-159
10. Ruffolo, M., Manna, M., Gallucci, L., Leone, N., Sac®.: A Logic-Based Tool for Seman-
tic Information Extraction. In: JELIA 2006. LNCS 4160, (2006) 50685
11. Ricca, F., Leone, N.: Disjunctive Logic Programming with types alnjgcts: The DLV
System. Journal of Applied Logic%3) (2007) 545-573
12. Ricca, F., Leone, N., De Bonis, V., DellArmi, T., Galizia, S., &a, G.: A DLP System
with Object-Oriented Features. In: LPNMR’05. LNCS 3662, (2005)-4&5
13. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantidigrdoin-Ordering Methods.
In: LPNMR’01. LNCS 2173, (2001) 280-294
14. Faber, W., Greco, G., Leone, N.: Magic Sets and their Applicati®ata Integration. JCSS
73(4) (2007) 584—609
15. Cumbo, C., Faber, W., Greco, G.: Enhancing the magic-setoahétin disjunctive datalog
programs. In: ICLP 2004. LNCS 3132
16. Faber, W., Leone, N., Pfeifer, G.: Experimenting with HeuristizsAnswer Set Program-
ming. In: IJCAI 2001) 635-640
17. Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancinjiidtantiator by backjumping
techniques. AMAI51(2—-4) (2007) 195-228

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Faber, W., Leone, N., Ricca, F.: Heuristics for Hard ASP Rnogr In: IJCAI 2005. (2005)
1562-1563

Ricca, F., Faber, W., Leone, N.: A Backjumping Technique fisjudctive Logic Program-
ming. Al Communicationd9(2) (2006) 155-172

Leone, N., Perri, S., Scarcello, F.: BackJumping TechniqueRdles Instantiation in the
DLV System. In: NMR 2004. (2004) 258—-266

Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Ofpesafor Disjunctive Logic
Programming Systems. Fl(2-3) (2006) 183-214

Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting wétursive queries in
database and logic programming systems. TBI(#008) 129-165

Terracina, G., De Francesco, E., Panetta, C., Leone, N.argitg a DLP system for ad-
vanced database applications. In: RR 2008, Karlsruhe, Germa&@gg)2

Eiter, T., lanni, G., Schindlauer, R., Tompits, H.: A Uniform Intgn of Higher-Order
Reasoning and External Evaluations in Answer Set Programming.J@AII 2005, Edin-
burgh, UK (2005) 90-96

Leone, N., Lio, V., Terracina, GRLV P E: Adding Efficient Data Management Features to
ASP. In: LPNMR-7. LNCS 2923, (2004) 341-345

Calimeri, F., Cozza, S., lanni, G.: External sources of knaydeohd value invention in logic
programming. AMAI50(3—-4) (2007) 333—-361

Ricca, F.: The DLV Java Wrapper. In: ASP’03, Messina, Italjo@ 305-316 Online at
http://CEUR-WS.org/Vol-78/.

McCarthy, J.: Programs with Common Sense. In: Proceedirthe deddington Conference
on the Mechanization of Thought Processes, Her Majesty’s Statiorféog QL959) 75-91
McCarthy, J., Hayes, P.J.: Some Philosophical Problems frei@tdndpoint of Artificial In-
telligence. In: Machine Intelligence 4. Edinburgh University Press91863-502 reprinted
in [85].

Minsky, M.: A Framework for Representing Knowledge. In: Tteyd¢hology of Computer
Vision. McGraw-Hill (1975) 211-277

Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjundtivgic Programming. The
MIT Press, Cambridge, Massachusetts (1992)

Przymusinski, T.C.: Stable Semantics for Disjunctive Progran®C 81(1991) 401-424
Subrahmanian, V., Nau, D., Vago, C.: WFS + Branch and BeuSthble Models. |IEEE
TKDE 7(3) (1995) 362—-377

Seipel, D., Thne, H.: DisLog — A System for Reasoning in Disjunctive Deductive
Databases. In: DAISD’94, Universitat Politecnica de Catalunya (UR294) 325-343
Pfeifer, G.: Disjunctive Datalog — An Implementation by Resolution stdes thesis, TU
Wien, Wien,Osterreich (1996) Supported by T. Eiter.

Leone, N., Rullo, P., Scarcello, F.: Declarative and Fixpoint&itarizations of Disjunctive
Stable Models. In: ILPS’95, Portland, Oregon, MIT Press (1995393

Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models:ounéled Sets, Fixpoint
Semantics and Computation. Information and Computdt#(2) (1997) 69-112

Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query LangualieEE TKDE9(3) (
1997) 448-463

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: Albxive System for Nonmono-
tonic Reasoning. In: LPNMR’97. LNCS 1265, Dagstuhl, Germany9{)®63-374

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: KReSystemd| v: Progress
Report, Comparisons and Benchmarks. In: KR'98,(1998) 406-41

Niemed, I., Simons, P.: Efficient Implementation of the Well-founded and IStitodel
Semantics. In: ICLP’96, Bonn, Germany, MIT Press (1996) 283-3

Cholewnski, P., Marek, V.W., Truszchgki, M.: Default Reasoning System DeReS. In:
KR’'96, Cambridge, Massachusetts, USA,(1996) 518-528

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.
65.

66.

Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation liff lComputations. In: LP-
NMR'99. LNCS 1730) 177-191

Faber, W., Leone, N., Pfeifer, G.: Optimizing the Computation afriséics for Answer Set
Programming Systems. In: LPNMR'01. LNCS 2173, (2001) 288-301

Faber, W., Leone, N., Ricca, F.: Solving Hard Problems for duo&d Level of the Polyno-
mial Hierarchy: Heuristics and Benchmarks. Intelligenza Artific{&) (2005) 21-28
Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Opesaor Answer Set Program-
ming Systems. In: NMR'2002. (2002) 200-209

Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logiogfamming Systems by
SAT Checkers. ALL5(1-2) (2003) 177-212

Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Databgsterzation Techniques for
Nonmonotonic Reasoning. In: DDLP’99, Prolog Association of Jap809%) 135-139
Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.gR¥ss Report on the Disjunctive
Deductive Database Systathv. In: FQAS'98. LNCS 1495, (1998) 148-163

Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive afdy Constraints. IEEE
TKDE 12(5) (2000) 845-860

Faber, W.: Disjunctive Datalog with Strong and Weak ConstraintsreReptational and
Computational Issues. Master’s thesis, TU Wien (1998)

Faber, W., Pfeifer, G., Leone, N., DellArmi, T., lelpa, G.: dign and implementation of
aggregate functions in the dlv system. TP&(B-6) (2008) 545-580

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregatessjanttive logic programs: Se-
mantics and complexity. In: JELIA 2004. LNCS 3229, (2004) 200-212

Faber, W., Leone, N., Pfeifer, G.: Semantics and complexitgafrsive aggregates in an-
swer set programming. Al (2008) Accepted for publication.

Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative aoch@itational Properties of
Logic Programs with Aggregates. In: IJCAI 2005. (2005) 406—411

Faber, W.: Unfounded Sets for Disjunctive Logic Programs withithary Aggregates. In:
LPNMR’05. LNCS 3662, (2005) 40-52

Calimeri, F., Cozza, S., lanni, G., Leone, N.: Computable Fumtio ASP: Theory and
Implementation. In: ICLP 2008, Udine, Italy (2008) To appear.

Buccafurri, F., Faber, W., Leone, N.: Disjunctive Logic Peogs with Inheritance. TPLP
2(3) (2002)

Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: AjicdlProgramming Approach to
Knowledge-State Planning: Semantics and Complexity. ACM TG) (2004) 206—263
Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: weisSet Planning under Action
Costs. JAIR19(2003) 25-71

Delgrande, J.P., Schaub, T., Tompits, H.: A Framework fangiting Preferences in Logic
Programs. TPLB(2) (2003) 129-187

Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing Prefeand Weakly Preferred
Answer Sets by Meta-Interpretation in Answer Set Programming. InAIAZ001 Spring
Symposium on ASP, California, USA, AAAI Press (2001) 45-52

Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran ASPolynomial Translation
of Logic Programs with Nested Expressions into Disjunctive Logic Pragr&reliminary
Report. In: NMR’2002. (2002)

Osorio, M., Corona, E.: The A-Pol system. In: Answer SegRumming. (2003)

Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Comlgrmmswer Set Program-
ming with Description Logics for the Semantic Web. In: KR 2004, Whistlemactka.
(2004) 141-151 Extended Report RR-1843-03-13, Instifutlfiformationssysteme, TU
Wien, 2003.

Eiter, T., lanni, G., Schindlauer, R., Tompits, H.: Nonmonotoegcdiption logic programs:
Implementation and experiments. In: LPAR 2004. (2004) 511-527

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

Eiter, T., Traxler, P., Woltran, S.: An Implementation for RecoigigiRule Replacements in
Non-ground Answer-Set Programs. In: JELIA 2006. LNCS 418006) 477—-480

Eiter, T., Fink, M., Senko, J.: KMonitor - A Tool for Monitoring Pl&xecution in Action
Theories. In: LPNMR’05. LNCS 3662, (2005) 416-421

Eiter, T., Erdem, E., Faber, W., Senko, J.: A Logic-Basedréggh to Finding Explanations
for Discrepancies in Optimistic Plan Execution. #(1-2) (2007) 25-69

Eiter, T., Fink, M., Senko, J.: A Tool for Answering Queries octién Descriptions. In:
JELIA 2006. LNCS 4160, (2006) 473-476

Caroprese, L., Trubitsyna, I., Zumpano, E.: Implementingritided reasoning in logic
programming. In: ICEIS 2007. (2007) 94-100

Brain, M., Gebser, M., tthrer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging asp
programs by means of asp. In: LPNMR’07. LNCS 4483, (2007431—

Gebser, M., &hrer, J., Schaub, T., Tompits, H.: A Meta-Programming Techniqu®e-
bugging Answer-Set Programs. In: AAAI'08, AAAI Press (20@1)8-453

Calimeri, F., lanni, G., lelpa, G., Pietramala, A., Santoro, M.&.system with template
answer set programs. In: JELIA. (2004) 693—-697

Perri, S., Leone, N.: Parametric connectives in disjunctive lagigramming. Al Commu-
nications17(2) (2004) 63-74

Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-backrigtes and heuristics in div: Im-
plementation, evaluation and comparison to gbf solvers. Journal ofigigts in Cognition,
Informatics and Logic§3(1-3) (2008) 70-89

Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism ferItistantiation of
ASP Programs. Journal of Algorithms in Cognition, Informatics andit®§3(1-3) (2008)
34-54

Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink,&fgco, G., lanni, G., Kalka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Stanksg, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and frsistent Data. In:
SIGMOD 2005, Baltimore, Maryland, USA, ACM Press (2005) 915-917

Calimeri, F., Citrigno, M., Cumbo, C., Faber, W., Leone, N.riP&r, Pfeifer, G.: New dlv
features for data integration. In: JELIA. (2004) 698-701

Franconi, E., Palma, A.L., Leone, N., Perri, S., ScarcelloCensus Data Repair: a Chal-
lenging Application of Disjunctive Logic Programming. In: LPAR 2001.C8 2250, (2001)
561-578

Friedrich, G., Ivanchenko, V. Diagnosis from first principlesr fworkflow
executions. Tech. Rep., http://proserver3-iwas.uni-klu.ac.at/dadmea/Technical-
Reports/technicateport 2008 02.pdf.

Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, [Gone, N.: OntoDLV:
an ASP-based System for Enterprise Ontologies. Journal of Logi€amputation (Forth-
coming)

Cumbo, C., liritano, S., Rullo, P.: Reasoning-Based Knowledgeagtion for Text Classi-
fication. In: Proceedings of Discovery Science, 7th Internationaf€ence, Padova, Italy
(2004) 380-387

Curia, R., Ettorre, M., Gallucci, L., liritano, S., Rullo, P.: TextDalcument Pre-Processing
and Feature Extraction in OLEX. In: Proceedings of Data Mining 200mtB&s, Greece
(2005)

McCarthy, J.: Formalization of Common Sense, papers by Jol@aktty edited by V.
Lifschitz. Ablex (1990)

