Answer Set Planning under Action Costs*

Thomas Eiter', Wolfgang Faber!, Nicola Leone?, Gerald Pfeifer!, and Axel Polleres!

1 nstitut filr Informationssysteme, TU Wien, A-1040 Wien, Austria
{eiter, faber, poll eres}@r.tuw en. ac. at,
pfei fer @bai . t un en. ac. at
2 Department of Mathematics, University of Calabria, 1-87030 Rende (CS), Italy
| eone@nical .it

Abstract. We present K¢, which extends the declarative planning language C
by action costs and optimal plans that minimize overall action costs (cheapest
plans). As shown, this novel language allows for expressing some nontrivial plan-
ning tasks in an elegant way. Furthermore, it flexibly allows for representing plan-
ning problems under other optimality criteria as well, such as computing “fastest”
plans (with the least number of steps), and refinement combinations of cheap and
fast plans. Our experience is encouraging and supports the claim that answer set
planning may be a valuable approach to advanced planning systems in which
intricate planning tasks can be naturally specified and effectively solved.

1 Introduction

Recently, several declarative planning languages and formalisms have been introduced,
which allow for an intuitive encoding of complex planning problems including rami-
fications, incomplete information, non-deterministic action effects, or parallel actions
[13,18,17,19,12, 4-6]. While these formalisms are designed to generate any plans that
establish the planning goals, in practice we are usually interested in particular plans that
are optimal with respect to an objective function which measures the quality (or cost)
of a plan. Often, this is just the number of time steps to achieve the goal, and many
systems are tailored to compute shortest plans (e.g. CMBP [4] and GPT [2] compute
shortest sequential plans, while Graphplan [1] computes shortest parallel plans).
However, there are other important objective functions to consider. If executing an
action (such as traveling from Vienna to Lamezia Terme) causes some cost, then we may
desire a plan which minimizes the overall cost of the actions in that plan. In answer set
planning [18], where plans are represented by answer sets of a logic program, this kind
of problem has not been addressed so far, to the best of our knowledge.
In this paper, we address this issue and present an extension of the planning lan-
guage K [5, 6], where one can associate actions with costs. The main contributions are:
— We define syntax and semantics of a modular extension to K. Costs are associated
to an action by a designated where-clause describing a cost value.
— Action costs may be dynamic, as they potentially depend on the current stage of the
plan when an action is considered for execution. Dynamic action costs have natural
applications, such as variants of the well-known Traveling Salesperson example.

* This work was supported by FWF (Austrian Science Funds) under the projects P14781 and
Z29-INF

— We sketch how planning with costs can be implemented by mapping it to answer
set programming, as realized in a system prototype that we have developed. The
prototype, ready for experiments, is available at http://www.dlvsystem.com/K/.

— Finally, we show that our language is capable of easily modeling optimal planning
under various criteria: computing (1) “cheapest” plans (which minimize overall
action costs); (2) “fastest” plans (with the least number of steps); and combinations
of these, viz. (3) fastest plans among the cheapest, and (4) cheapest plans among
the fastest. To our knowledge, task (3) has not been addressed in other works so far.

The extension of K by action costs provides a flexible tool for representing different
problems. Moreover, by K’s nature, we get the possibility to easily combine dealing
with incomplete knowledge and plan quality, which is completely novel.

Our experience is encouraging and gives further evidence that answer set planning,
based on powerful logic programming engines, allows for the development of advanced
declarative planning systems in which intricate planning tasks can be naturally specified
and decently solved.

For space reasons, we provide proofs and more material in an extended paper [8].

2 Review of Language K

In this section, we give a brief informal overview of the language K. We assume that
the reader is familiar with action languages and the notions of actions, fluents, goals,
and plans and refer to [6] for further details. For illustration, we shall use the following
running example, for which a X encoding is shown in Figure 1.

Bridge crossing. Four men want to cross a river at night. It is bridged by a plank bridge,
which can only hold up to two persons at a time. The men have a lamp, which must be
used in crossing, as it is pitch-dark and some planks are missing. The lamp must be
brought back; no tricks (like throwing the lamp or halfway crosses) are allowed. O

A state in K is characterized by the truth values of fluents, describing relevant prop-
erties in the universe of discourse. A fluent may be true, false, or unknown in a state;
formally, a state is any consistent set s of (possibly negated) legal fluent instances. Note
that in world-state planning, each fluent is either true or false in a state (this can be
easily emulated in).

An action is only applicable if some precondition holds in the current state, and its
execution may cause a modification of truth values of some fluents.

Background knowledge. Static knowledge which is invariant over time is specified as a
disjunction-free Datalog program which we require to have a total well-founded model
(and therefore a unique answer set).!

In our example, the background knowledge is simply

person(joe). person(jack). person(will). person(ave).

! The well-founded model can be calculated in polynomial time and if it is total it corresponds
to the unique answer set.

(1) actioms: cross2(X, Y) requires person(X), person(Y), X!=Y.

(2) cross(X) requires person(X).
3) takeLamp(X) requires person(X).
(4) fluents: across(X) requires person(X).
(5) diffSides(X,Y) requires person(X), person(Y).
(6) hasLamp(X) requires person(X).
(7) initially: caused -across(X). hasLamp(joe).
(8) always: executable cross2(X,Y) if hasLamp(X).
9) executable cross2(X,Y) if hasLamp(Y).
(10) nonexecutable cross2(X,Y) if diffSides(X, Y).
(11) executable cross(X) if hasLamp(X).
(12) executable takeLamp(X).
(13) nonexecutable takeLamp(X) if hasLamp(Y), diffSides(X,Y).
(14) caused across(X) after cross2(X,Y), -across(X).
(15) caused across(Y) after cross2(X,Y), -across(Y).
(16) caused -across(X) after cross2(X,Y), across(X).
(17) caused -across(Y) after cross2(X,Y), across(Y).
(18) caused across(X) after cross(X), -across(X).
(19) caused -across(X) after cross(X), across(X).
(20) caused hasLamp(X) after takeLamp(X).
(21) caused -hasLamp(X) after takeLamp(Y), X !=Y, hasLamp(X).
(22) caused diffSides(X,Y) if across(X), -across(Y).
(23) caused diffSides(X,Y) if -across(X), across(Y).
(24) inertial across(X).
(25) inertial -across(X).
(26) inertial hasLamp(X).
(27) noConcurrency.
(28) goal: across(joe), across(jack), across(will), across(ave)? (i)

Fig. 1. K encoding of the Bridge Crossing problem

Type Declarations. The ranges of the arguments of fluents and actions must be speci-
fied. For instance, line (1) in Figure 1 specifies the arguments of action cross2, where
two persons cross the bridge together, while line (4) specifies a fluent describing the
fact that a specific person is on the other side of the river. The literals after “requires”
in a declaration are from IT or built-in predicates. DLVX [7], our implementation of X,
currently supports built-in predicates “a < b”, “a <= b”, and “a!=b” with the obvi-
ous meaning for strings and numbers, predicates “a = b + c¢”, “a = b x ¢” for integer
arithmetics, and “#int(X)” which enumerates all integers (up to a limit set by the user).

Causation Rules. Causation rules (“rules” for brevity) are syntactically similar to rules
of the language C [13,18, 17] and are of the basic form “caused f if B after A.”
Informally, this reads: if B holds in the current state and A held in the previous state,
then £ is known to be true in the current state as well. Both the if and after parts are
optional. A rule is called static if its after part is empty, and dynamic otherwise.

Rules are used to express effects of actions or ramifications. E.g., the rules (18) and
(19) describe the effects of a single person crossing the bridge in either direction.

Initial State Constraints. Rules can apply to all states or only to the initial state (which
may not be unique). This is expressed by the keywords “always :” and “initially :”
preceding sequences of rules. For example, line (7) enforces the fluent across to be
false in the initial state for all X satisfying the fluent declaration, i.e., for all persons.

Executability of Actions. This is expressed in K explicitly, as in lines (8) and (9) which
state that two persons can jointly cross the bridge if one of them has a lamp. The same
action may have multiple executability statements. Dually, “nonexecutable A if B.”
prohibits the execution of action A if condition B is satisfied. For example, line (13)
says that two persons cannot cross the bridge together if they are on different sides of
the bridge. In case of conflicts, nonexecutable A overrides executable A.

Parallel Actions. K permits simultaneous execution of actions. If, as on line (27),
“noConcurrency.” is specified, then at most one action at a time can be executed.

Default and Strong Negation. C supports strong negation (written as “-) where knowl-
edge about a fluent £ may be incomplete, i.e., in any given state neither f nor - f needs
to hold. In addition, weak negation (“not”), interpreted like default negation in answer
set semantics [11], is permitted in rule bodies. This allows for natural modeling of in-
ertia, default properties, and dealing with incomplete knowledge in general.

Macros. K provides a number of macros as syntactic sugar. For example, the inertial
statement in line (24) informally states that across(X) holds in the current state if
across(X) held at the previous state unless -across(X) is explicitly known to hold.
This macro expands to “caused across(X) if not -across(X) after across(X).”

Moreover, we can “totalize” the knowledge of a fluent by declaring “total £.”
which is a shortcut for a pair of rules “caused f if not -f.” and “caused -f if not f.”
with the intuitive meaning that unless a truth value for f can be derived, the cases where
f resp. - f are true will both be considered.

Planning domains and problems. In i, a planning domain PD = (II,{D, R)) has a
background knowledge I7, action and fluent declarations D, and rules and executability
conditions R; a planning problem P = (PD, ¢) has a planning domain PD and a query

4d=9g1,--+s9m,00t gmy1,...,00t g, 7 (i)

where g1, ..., g, are ground fluents and ¢ > 0 is the plan length (see line (28)). An
(optimistic) plan for P is a sequence P = (Ay,..., A;) of action instances with a
supporting trajectory T' = ({sq, A1,51), (81, A2,82), ..., {si—1, A1, 51)) to the goal,
i.e., starting at a legal initial state sq, the actions in Ay, A, etc. are executable and lead
to legal successor states sq, s etc. such that all literals in g are true in s;.

If, as stated in Figure 1, joe initially carries the lamp, our problem has simple five-
step plans where joe always carries the lamp and brings all others across; e.g.,

P = ({cross2(joe, jack)}, {cross(joe)}, {cross2(joe,will)},
{cross(joe)}, {cross2(joe,ave)})

3 Actionswith Costs

Using K and DLV, it is possible to express and solve involved planning tasks. However,
K and DLV offer no means for finding optimal plans with respect to any criteria. In
particular, this applies to action costs, which are needed for the following elaboration
of the bridge crossing example that is well-known as a brain-teasing riddle.

Quick bridge crossing. The four guys need different times to cross the bridge, namely
1, 2, 5, and 10 minutes, respectively. Walking in two implies moving at the slower rate.
Is it possible to get all of them across within 17 minutes? |

On first thought, this is not feasible, since the seemingly optimal plan where joe,
who is the fastest, keeps the lamp and leads all the others across takes 19 minutes.
Surprisingly, as we will see, there is a better solution.

In order to allow for an elegant and convenient encoding of such optimization prob-
lems, we extend K to the language K¢ where we can assign costs to actions.

3.1 Syntaxof K¢

Let o%°t denote the set of action names, and Lyyp the set of literals over predicates
defined in the background knowledge including built-in predicates. Furthermore, let
o¥?" denote the set of variable symbols. K¢ merely extends action declarations in K to
express action costs as follows.

Definition 1. An action declaration d in K¢ is of the form:

p(Xy,...,X,) requires t1,...,t, costs C where cy,...,Ck. 1)
where (1) p € ot has arityn > 0, 2) X1,...,Xn € 0%, (3) t1,...,tm, C1,---,Ck
are from Ly,, such that every X; occurs in ti,...,t,,% (4) C is either an integer
constant, a variable from the set of all variables occurring in tq,...,tm, ¢1,-..,Ck

(denoted by o¥*"(d)), or the distinguished variable time, and (5) c¥*"(d) C ¢?%" U
{time}, and time does not occur in ty,...tn.

If m = 0, the keyword ‘requires’ is omitted; if £ = 0, the keyword ‘where’ is omitted
and ‘costs C” is optional. Planning domains and problems are defined as in £.
Examples will be given in Section 3.3.

3.2 Semantics of K¢

Semantically, ¢ extends X by the cost values of actions at points in time. In any plan
P={A,...,A;), atstep1 <4 <, i.e.attime i, the actions in A; are executed.

We recall that a ground action p(z1, .. .,,) is a legal action instance of an action
declaration d w.r.t. a K planning domain PD = (II,{D, R)), if a ground substitution
for ov*"(d) exists such that X;6 = x;, for1 <i < mnand {t:9,...,t,,0} C M, where
M is the unique answer set of the background knowledge II. Any such @ is called a
witness substitution for p(x1, . .., x,). Action costs are now formalized as follows.

2 Informally, this means that all parameters of an action must be “typed” in the requires part.

Definition 2. Let a = p(x1,...,x,) be a legal action instance with declaration d of
the form (1), let 4 > 1 be a time point, and let § be a witnessing substitution for a with
timed = 4. Then

0, if the costs part of d is empty;
costi g(p(x1,...,2,)) = S val(CO), if{c16,...,ck8} C M;
undefined, otherwise.

By involving the variable time it is possible to define time-dependent action costs.
This can be used for complex variants of Traveling Salesperson, where the optimal tour
does not only depend on the route taken, but also when a certain connection is used
(e.g., imagine the traffic jams on some roads during the weekend, which could increase
the cost of a connection). We do not elaborate on this application here due to space
restrictions, see [8] or http://www.dlvsystem.com/K/.

Using cost; ¢, we introduce well-defined legal action instances and action costs:

Definition 3. A legal action instance a = p(z1,...,z,) is well-defined iff for any
time point ¢ > 1, it holds that (i) there is some witness substitution 8 for a such that
cost; g(a) is an integer > 0, and (ii) cost; g (a) = cost; g (a) holds for any two witness
substitutions 8, 8" with defined costs.For any well-defined a, its unique cost at time point
i > 1is given by cost;(a) = cost;g(a) where g is as in (i).

In this definition, condition (i) ensures that some cost value exists, which is an inte-

ger number, and condition (ii) ensures that this value is well-defined, i.e., different wit-
ness substitutions 8 and 8’ for a can not evaluate the cost part to different integer cost
values. In our framework, the semantics of a K¢ planning domain PD = (II,(D, R))
is only well-defined, if all legal instances of action declarations in PD are well-defined.
This will be fulfilled if, for instance, the variables Xi, ..., X, in (1) in database terms
functionally determine the values of the other variables except time, i.e., any tuple of
values (z1,...x,) for Xi,..., X, has a unique extension to a tuple of values for all
variables in d except time. In the rest of this paper, we assume well-definedness of
K¢ unless stated otherwise. Violations of well-definedness can be easily detected by
introducing designated fluents and rules, see [8] for details. Using cost;, we now define
costs of plans.
Definition 4. Let P be a planning problem. Then, for any plan P = (A44,...,4;)
for P, its cost is defined as costp(P) = Y._, (Xaca, costi(a)) . A plan P is opti-
mal for P and fixed plan length s, if it has least cost among all plans of length ¢, i.e.,
costp(P) < costp(P') for each plan P’ of length ¢ for . The cost of P w.r.t. plan
length ¢ is the cost of an optimal plan for P and 4.

Usually one only can estimate some upper bound of the plan length, but does not
know the exact length of an optimal plan. Although we have only defined optimality for
a fixed plan length 4, we will see in Section 4.1 that by appropriate encodings this can
extended to optimality for plans with length at most i.

3.3 An optimal solution for crossing the bridge

To model the different times the four guys need to cross the bridge, we extend the
background knowledge, where ‘max’ determines which of two persons is faster:

6

speed(joe, 1). speed(jack, 2). speed(will, 5). speed(ave, 10).
max(A,B,A) :- speed(_,A), speed(-,B), A >=B.
max(A,B,B) :- speed(_,A), speed(_,B), B > A.
Next, we add costs to the action declarations for cross and cross2 (leaving takeLamp
unchanged, as the time to hand over the lamp is negligible).
cross(X) requires person(X) costs SX where speed(X, SX).
cross2(X,Y) requires person(X), person(Y), X <Y costs Smax
where speed(X, SX), speed(Y, SY), max(SX, SY, Smax).
As easily seen, the cost of the 5-step plan considered in Section 2 is 19. However, when
we also consider longer plans, we can find the following 7-step plan P with cost 17:
P = ({cross2(joe, jack)}, {cross(joe)}, {takeLamp(will)}, {cross2(will, ave)}
{takeLamp(jack)}, {cross(jack)}, {cross2(joe, jack)})

P has least cost over all trajectories of any length establishing the goal and thus consti-
tutes an optimal solution of our problem for fixed plan lengthi > 7.

3.4 *“Crossing the Bridge” under incomplete knowledge

K is well-suited to model problems which involve qualitative uncertainty such as in-
complete initial states or non-deterministic action effects. The extension of K to K¢ to
include costs gracefully applies to so called secure (conformant) plans as well, which
must reach the goal under all circumstances [5].
For example, assume we only know that some of the desperate guys has a lamp.
If they now ask for a plan to safely cross the bridge, we need a (fast) secure plan that
works under all possible initial situations. In K¢, this can be easily modeled by replacing
“initially : hasLamp(joe).” by the following, where the first statement says that
each guy might have a lamp, and the second that at least one guy has one.
initially : total hasLamp(X).
caused false if -hasLamp(joe), -hasLamp(jack),
-hasLamp(will), -hasLamp(ave).

Clearly, the optimal solution still takes at least 17 minutes, since the original case
(where only joe has a lamp) is one of the possible initial situations. However, an op-
timal secure plan now takes at least 8 steps, since we must assure in the first step that
either joe or jack has the lamp. One such a plan with cost 17 is

P = ({takeLamp(joe)}, {cross2(joe, jack)}, {cross(joe)}, {takeLamp(will)}
{cross2(will, ave)}, {takeLamp(jack)}, {cross(jack)}, {cross2(joe, jack)})

4 Applications

4.1 Cost Efficient versus Time Efficient Plans

In this section, we show how our approach can be used to minimize plan length together
with the costs of a plan under parallel actions. In [15, 16] various criteria for optimiza-
tion are proposed for parallel action domains, such as minimizing the total number of
actions, or the number of time steps. We will concentrate on the following generaliza-
tions of these optimization criteria with arbitrary action costs. Finding

(@) plans with minimal costs (cheapest plans) for a given number of steps,
(8) plans with minimal time steps (shortest plans),

() shortest among the cheapest plans, and

(6) cheapest among the shortest plans.

— BEE
6]
|

Fig. 2. A simple Blocks World instance

(a) Cheapest plans for given plan length. As a guiding example, we refer to the blocks
world problem in Figure 2, where we want to find the minimal number of moves (pos-
sibly in parallel) to achieve the goal state. As background knowledge I1y,,, we use:

block(1). ... block(6). location(table). location(B):- block(B).

and the following K¢ program:

fluents: on(B,L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).
actions: move(B,L) requires block(B), location(L) costs 1.
always : executable move(B,L) if B!=L.
nonexecutable move(B,L) if blocked(B).
nonexecutable move(B,L) if blocked(L).
nonexecutable move(B,L) if move(B1,L), B!=B1, block(L).
nonexecutable move(B,L) if move(B,L1), L!=L1.
nonexecutable move(B,B1) if move(B1,L).
caused on(B,L) after move(B,L).
caused blocked(B) if on(.,B).
caused moved(B) after move(B,.).
caused on(B,L) if not moved(B) after on(B,L).
initially : on(1,2).on(2,table).on(3,4).on(4,table).on(5,6).on(6, table).
goal : on(1,3), on(3,table), on(2,4), on(4, table), on(6,5), on(5, table) 7 (i)
Each move is penalized with cost 1, minimizing the total number of moves. The instance
has a two-step parallel solution which involves six moves:
P = ({move(1,table), move(3, table), move(5, table)},
{move(1, 3), move(2, 4),move(6,5)})
However, there is a sequential plan with only five moves:
P = ({move(3,table)}, {move(1,3)}, {move(2,4)}, {move(5, table)}, {move(6,5)})
This plan can be parallelized to have 3 steps, but not to have 2 steps. For any length

> 3, we obtain optimal plans involving 5 actions. Consequently, the minimal number
of steps for a maximally parallelized plan with a minimal number of actions is 3.

(8) Shortest Plan. For optimization (3) we assume that no action costs are specified in
the original problem, and minimizing time steps is our sole target. We will show a gen-
eral preprocessing method for ¢ planning problems which, given an upper bound ¢ of
time steps, guarantees plans with a minimal number of steps. Many typical applications
have an inherent upper bound for the plan length. In blocks world for a configuration
with n Blocks, any goal configuration can be reached within at most 2n — s — s,
steps, where s; and s, represent the numbers of stacks in the initial and goal states.®
Therefore, 6 is an upper bound for the plan length of our simple instance.

First, we add a new distinct fluent gr and a new distinct action finish to our
domain and extend the always section of the program replacing the original goal:

fluents : gr.

actions : finish costs time.

always : executable finish if gi, ..., @, DOt gut1, ..
caused gr after finish.
caused gr after gr.

goal : gr 7 (@)

., not gn, not gr.

wheregi, ..., gn, 0ot gny1,...,00t gy are the original goal literals. Intuitively, finish
represents a final action, which always has to be executed to finish the plan. The later it
occurs, the more expensive is the plan. The fluent gr has the meaning ”goal reached”.

Furthermore, we want the action finish to occur exclusively and any occurrence
of any other actions should be blocked as soon as the goal has been reached. Therefore,
for any action A we add not gr tothe if part of any executability condition for A and
add arule: nonexecutableA if finish.

Finally, to avoid any inconsistencies from static or dynamic effects, as soon as the
goal has been reached, we add not gr to the if part of any causation rule of the
original program except nonexecutable rules.*

Ifnow P' = (Aq,...,A4;,Ajtq,...,A;) is an optimal cost plan for the modified
K¢ planning problem Pmin for plan length [where A; = {finish}, then P" =
(A1,...,A;_1) is a minimal length plan for the original planning problem and all
Ajt1 = ... = A; = 0. Using this method, we obtain all 2-step parallel plans for
our blocks world example.

Note that this approach for minimizing plan length is only efficient, if we know an
upper bound close to the optimum. Searching for a minimum length plan by simply
iteratively increasing the plan length could be more efficient when no such bound is
known, as the search space might explode with a weak upper bound.

(v) and (8) In the last section, no costs were specified in the original program. If
we want to find the shortest among the cheapest plans with arbitrary action costs, we
have to set the costs of all actions higher than the highest possible cost value of action
finish. Obviously, the highest cost for £inish is the plan length i. Thus, we simply
modify all action declarations by multiplying the original costs C with factor i:

3 We can trivially solve any blocks world problem sequentially by first unstacking all blocks
(n — s; steps) and then building up the goal configuration (n — s4 steps).

4 There is no need to rewrite nonexecutable rules because the respective actions are already
“switched off” by rewriting of the executability conditions.

A requires B costs C; where C; =1ix*C, D.

This lets all other action costs take priority over the cost of finish and we can compute
plans satisfying criterion (). Applying this rewriting to our blocks world example, a
possible plan for length ¢ = 7 is
P = ({move(3, table)}, {move(1,3),move(5,table)},

{move(2,4), move(6,5)}, {finish}, 0, 0, 0)

As mentioned above, 6 is an upper bound for the plan length, but plan length i = 7
is needed for the final £inish action. Analogously, in order to compute the cheapest
among the shortest plans, the cost function of finish has to be adapted, such that the
costs of finish take priority over all other actions costs. To this end, we set these costs
high enough, by multiplying them with a factor higher than the sum of all costs of all
legal action instances, i.e. the costs of all actions executed in parallel in 4 steps. We thus
can compute solutions for optimization criterion (6).

In our example, there are 36 possible moves; theoretically, we would have to set
the costs of action finish to time % 36 * 4. Though, at most 6 blocks can be moved
in parallel, and it is sufficient to set the costs of finish to time x 6 x ¢ = time % 42.
Accordingly, the action declarations are modified as follows:

actions: move(B,L) requires block(B), location(L) costs 1.

finish costs C where C = time % 42.

An optimal plan for the modified program for plan length (at most) 7 which in fact
amounts to a two-step plan, is:

P = ({move(1,table), move(3, table), move(5, table)},
{move(1, 3), move(2,4),move(6,5)}, {finish}, 0, 0, 0, @)

5 Implementation

We briefly describe how planning under action costs can be implemented using a trans-
lation to answer set programming. We will define an extension Ig*(P) of the logic
program Ip(7P) as defined in [7], such that its optimal answer sets (i.e., those minimiz-
ing weak constraint violation, see [10, 3]) correspond to the optimal cost plans for a
planning problem P.

We recall that in Ip(P) fluent and action literals are extended by an additional time
parameter, and executability conditions as well as causation rules are modularly trans-
lated into corresponding program rules and constraints; disjunction is used for guessing
at each point in time the actions which should be executed in the plan.

The translation I[p* (P) for ¢ problem P includes all rules of ip(P’) from [7] for
the X problem P’ which results from P by omitting all cost parts of action declarations.
In addition, for any action declaration d of the form (1) with nonempty costs part, the

following two statements are included (let X = X,..., X,,):
cost,(X,T,C) - p(X,T), t1,..,tm,cC1,...,ck, U=T+1. 2
i~ costy(X,T,C). [C] (3)

In statement (2), 7' and U are new variables and each occurrence of time is re-
placed by U. Statement (3) is a weak constraint. Intuitively, a weak constraint denotes

10

a property which should preferably hold, and statement (3) associates a cost C' to the
weak constraint, which can be interpreted as a penalty to be considered if the weak
constraint is not satisfied. An optimal answer set is an answer set for which the sum of
the penalties of violated weak constraints is minimal (We refer to [10, 3] for details).
For example, the cross action defined in Section 3.3 is translated to:

cOoSteross (X, T, SX) : - cross(X, T), person(X), speed(X,SX), U=T+ 1.

i~ costeross (X, T, SX). [SX]

As shown in [7], the answer sets of [p(P) correspond to trajectories of optimistic plans
for P. We have similar results for plans with action costs.

Theorem 1 (answer set correspondence). Let P = (PD,q) be a (well-defined) K¢
planning problem. Then, for each optimistic plan P = (4, ..., 4;) of P and support-
ing trajectory T = ({so,A41,81), ..., {S1—1, A;, s1)) of P, there exists an answer set
S of Ip¥(P) representing this trajectory such that the sum of weights of violated weak
constraints equals costp(P), and vice-versa.

Corollary 1 (optimal answer set correspondence). For any well-defined K¢ planning
problem P, the (trajectories T' = ((sq, A1, 1), ..., {s1—1, A, s;)) of) optimal plans P
for P correspond to the optimal answer sets S of ip®(P).

Using these results, we have implemented an experimental prototype for planning in
K¢, which can be downloaded from http://www.dlvsystem.com/K/. Further documen-
tation on techniques and usage of the prototype is available there and in [7]. For a more
detailed discussion of the translation and the prototype we refer to [8].

6 Rdated Work and Conclusion

We have presented an extension of the language X which allows for the formulation of
various optimality criteria of desired plans by means of variable action costs, and we
sketched a translation to answer set programming with weak constraints. In fact, our
implementation also supports computing admissible plans, i.e., plans the costs of which
stay within a given limit (see [8]).

In the last years, it has been widely recognized that plan length alone is only one cri-
terion to be optimized in planning. Several attempts have been made to extend heuristic
search planners to allow for special heuristics respecting action costs, e.g. [9, 14].

A powerful approach is given in [20], where planning with resources is described
as a structural constraint satisfaction problem (SCSP). The problem is solved by lo-
cal search combined with global control. However, [20] promotes the inclusion of
domain-dependent knowledge; the general problem has an unlimited search space, and
no declarative high-level language is provided. Among other related approaches, [15]
generalizes the “Planning as Satisfiability” approach to use integer optimization tech-
niques for encoding optimal planning under resource production/consumption. In [16]
an extension of the action language C is mentioned which allows for an intuitive encod-
ing of resources and costs, but optimization is not considered in that framework.

A crucial difference between resource-based approaches and ours is that the former
build on fluent values, while our approach hinges on action costs. This is a somewhat

11

different view of the quality of a plan. We plan to generalize our framework such that
dynamic fluent values may contribute to action costs. Further possible extensions in-
clude negative action costs, which are useful for modeling producer/consumer relations
among actions and resources, and different priorities (cost levels) to increase the flexi-
bility and allow for optimizing different criteria at once. Another aspect to be explored
is the computational complexity of ¢, complementing the results in [6].

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. Artifi cial
Intelligence, 90:281-300, 1997.

B. Bonet and H. Geffner. Planning with incomplete information as heuristic search in belief
space. In Proc. AIPS 00, pp. 52-61, 2000.

F. Buccafurri, N. Leone, and P. Rullo. Enhancing disjunctive datalog by constraints. |[EEE
TKDE, 12(5):845-860, 2000.

A. Cimatti and M. Roveri. Conformant planning via symbolic model checking. Journal of
Artifi cial Intelligence Research, 13:305-338, 2000.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under incomplete knowl-
edge. In: Proc. CL-2000, pp. 807-821, LNCS 1861, Springer, 2000.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to
knowledge-state planning: Semantics and complexity. Technical Report INFSYS RR-1843-
01-11, Inst. f. Informationssysteme, TU Wien, December 2001.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to
knowledge-state planning, II: The DLVX system. Technical Report INFSYS RR-1843-01-
12, Inst. f. Informationssysteme, TU Wien, December 2001.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Answer set planning under action
costs. Manuscript, 2002.

E. Ephrati, M. E. Pollack, and M. Mihlstein. A cost-directed planner: Preliminary report. In
Proc. AAAI-96, pp. 1223-1228. AAAI Press, 1996.

W. Faber. Disjunctive Datalog with Strong and Weak Constraints: Representational and
Computational Issues. Master’s thesis, Inst. f. Informationssysteme, TU Wien, 1998.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365-385, 1991.

E. Giunchiglia. Planning as satisfiability with expressive action languages: Concurrency,
constraints and nondeterminism. In Proc. KR 2000, pp. 657-666. Morgan Kaufmann, 2000.
E. Giunchigliaand V. Lifschitz. An action language based on causal explanation: Preliminary
report. In Proc. AAAI ' 98, pp. 623-630, AAAI Press, 1998.

P. Haslum and H. Geffner. Admissible heuristics for optimal planning. AIPSQ0, pp. 140-
149. AAAI Press, 2000.

H. Kautz and J. P. Walser. State-space planning by integer optimization. In AAAI'99, pp.
526-533. AAAI Press, 1999.

J. Lee and V. Lifschitz. Additive fluents. In Proc. AAAI 2001 Spring Symposium on Answer
Set Programming, pp. 116-123, AAAI Press, 2001.

V. Lifschitz and H. Turner. Representing transition systems by logic programs. LPNMR’ 99,
pp. 92-106.

V. Lifschitz. Answer set planning. ICLP’99, pp. 23-37. MIT Press, 1999.

N. McCain and H. Turner. Satisfiability planning with causal theories. KR 98, pp. 212-223.
Morgan Kaufmann, 1998.

A. Nareyek. Beyond the plan-length criterion. In Local Search for Planning and Scheduling,
ECAI 2000 Workshop, LNCS 2148, pp. 55-78. Springer, 2001.

12

