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Abstract. The addition of aggregates has been one of the most relevant en-
hancements to the language of answer set programming (ASP). They strengthen
the modeling power of ASP, in terms of concise problem representations. While
many important problems can be encoded using nonrecursive aggregates, some
relevant examples lend themselves for the use of recursive aggregates. Previous
semantic definitions typically agree in the nonrecursive case, but the picture is
less clear for recursion. Some proposals explicitly avoid recursive aggregates,
most others differ, and many of them do not satisfy desirable criteria, such as
minimality or coincidence with answer sets in the aggregate-free case.

In this paper we define a semantics for disjunctive programs with arbitrary aggre-
gates (including monotone, antimonotone, and nonmonotone aggregates). This
semantics is a fully declarative, genuine generalization of the answer set seman-
tics for disjunctive logic programming (DLP). It is defined by a natural variant
of the Gelfond-Lifschitz transformation, and treats aggregate and non-aggregate
literals in a uniform way. We prove that our semantics guarantees the minimality
(and therefore the incomparability) of answer sets, and demonstrate that it coin-
cides with the standard answer set semantics on aggregate-free programs. Finally
we analyze the computational complexity of this language, paying particular at-
tention to the impact of syntactical restrictions on programs.

1 Introduction

Aggregates significantly enhance the language of answer set programming (ASP), al-
lowing for natural and concise modeling of many problems. Nonrecursive (also called
stratified) aggregates have clear semantics and capture a large class of meaningful prob-
lem specifications. However, there are relevant problems for which recursive (unstrati-
fied) aggregate formulations are natural; the Company Control problem, illustrated next,
is a typical example, cf. [1-4].

Example 1. We are given a set of facts for predicate company(X), denoting the com-
panies involved, and a set of facts for predicate ownsStk(C'1,C2, Perc), denoting the
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percentage of shares of company C'2, which is owned by company C'1. Then, company
C1 controls company C2 if the sum of the shares of C'2 owned either directly by C'1 or
by companies, which are controlled by C'1, is more than 50%. This problem has been
encoded as the following program P.;,; by many authors in the literature [1-4].3

controlsStk(C1,C1, C2, P):—ownsStk(C1,C2, P).
controlsStk(C1,C2,C3, P):—company(C1), controls(C1, C2), ownsStk(C2,C3, P).
controls(C1, C3):—company(C1), company(C3),

#sum{ P, C2 : controlsStk(C1,C2,C3, P)} > 50.

Intuitively, controlsStk(C1,C2,C3, P) denotes that company C'1 controls P% of C3
shares “through” company C2 (as C'1 controls C2, and C2 owns P% of C3 shares).
Predicate controls(C'1,C2) encodes that company C'1 controls company C2. For two
companies, say, ¢l and ¢3, controls(cl, ¢3) is derived if the sum of the elements in the
multiset {P | 3C2 : controlsStk(cl,C2,c3, P)} is greater than 50. Note that in the
DLV syntax this multiset is expressed by {P, C2 : controlsStk(cl,C2,¢3, P)} where
the variable C'2 avoids that duplicate occurrences of P are eliminated.

The encoding of Company Control contains a recursive aggregate (since predicate
controlsStk in the aggregate depends on the head predicate controls). Unfortunately,
however, recursive aggregates are not easy to handle, and their semantics is not always
straightforward.

Example 2. Consider the following two programs:
Py : {p(a):—#count{X : p(X)} > 0.} P> : {p(a):—F#count{X : p(X)} < 1.}

In both cases p(a) is the only atom for p which might be true, so, intuitively, one
may expect that #count{X : p(X)} > 0is true iff p(a) is true; while #count{X :
p(X)} < 1 should be true iff p(a) is false. Thus, the above programs should, respec-
tively, behave like the following standard programs:

Pl : {p(a):—p(a).} P; : {p(a):—not p(a).}

This is not always the case in the literature, and there is a debate on the best semantics
for recursive aggregates.

There have been several attempts for defining a suitable semantics for aggregates
[2,6,7,4,8]. However, while previous semantic definitions typically agree in the non-
recursive case, the picture is not so clear for recursion. Some proposals explicitly avoid
recursive aggregates, most others differ, and many of them do not satisfy desirable cri-
teria, such as minimality*. Relevant progress towards a suitable semantics for recursive
aggregates has been recently made in [4, 8], where the authors provide a semantics
which guarantees minimality and extends standard answer sets. However, both defini-
tions are given operationally and do not cover all language fragments. The first proposal
disregards disjunctive programs, while the latter covers only monotone aggregates.

3 Throughout this paper, we adopt the concrete syntax of the DLV language [5] to express
aggregates in the examples.

4 The subset-minimality of answer sets, which holds in the aggregate-free case and for the main
nonmonotonic logics [9], also guarantees that answer sets are incomparable, and allows to
define the transitive closure — which becomes impossible if minimality is lost [4].



In this paper, we make a step forward and provide a fully declarative semantics
which works also for disjunctive programs and arbitrary aggregates. The main contri-
butions of the paper are the following:

— We provide a definition of the answer sets semantics for disjunctive programs
with arbitrary aggregates (including monotone aggregates, antimonotone aggre-
gates, and aggregates which are neither monotone nor antimonotone). This se-
mantics is fully declarative and is given in the standard way for answer sets, by
a generalization of the well-known Gelfond-Lifschitz transformation.

— We study the properties of the proposed semantics, and show the following results:

e Our answer sets are subset-minimal models, and therefore they are incompa-
rable to each other, which is generally seen as an important property of non-
monotonic semantics [10, 4].

o For aggregate-free programs, our semantics coincides with the standard answer
set semantics.

e From a semantic viewpoint, monotone aggregate literals correspond to posi-
tive standard literals, while antimonotone aggregates correspond to negative
standard literals. We provide a rewriting from standard logic programs with
negation to positive programs with antimonotone aggregate atoms.

— We carry out an in-depth analysis of the computational complexity of disjunctive
programs with aggregates and fragments thereof. As long as the values of aggre-
gates are computable in polynomial time, their addition does not increase the com-
plexity of the full DLP language. However, the complexity of some fragments of
DLP is affected by aggregates. Interestingly, monotone aggregates never alter the
complexity, while antimonotone aggregates cause a complexity gap in many cases
(see Section 4); arbitrary aggregates behave precisely like antimonotone aggregates
from the complexity viewpoint in the studied cases.

2 The DLP“ Language

In this section, we provide a formal definition of the syntax and semantics of the DLP
language — an extension of Disjunctive Logic Programming (DLP) by set-oriented
functions (also called aggregate functions). We assume that the reader is familiar with
standard DLP; we refer to atoms, literals, rules, and programs of DLP, as standard
atoms, standard literals, standard rules, and standard programs, respectively. For fur-
ther background, see [11, 12].

2.1 Syntax

Set Terms. A (DLP) set term is either a symbolic set or a ground set. A symbolic set
is a pair { Vars: Conj}, where Vars is a list of variables and Conj is a conjunction of
standard atoms.> A ground set is a set of pairs of the form (£: Conj), where £ is a list of
constants and Conj is a ground (variable free) conjunction of standard atoms.

3 Intuitively, a symbolic set {X : a(X,Y),p(Y)} stands for the set of X-values making
a(X,Y),p(Y) true, ie., {X |TY s.t. a(X,Y), p(Y) is true}.



Aggregate Functions. An aggregate function is of the form f(S), where S is a set
term, and f is an aggregate function symbol. Intuitively, an aggregate function can be
thought of as a (possibly partial) function mapping multisets® of constants to a constant.

Example 3. The aggregate functions currently supported by the DLV system are: #min
(minimal term, undefined for empty set), #max (maximal term, undefined for empty
set), #count (number of terms), #sum (sum of non-negative integers), and #times
(product of positive integers).

Aggregate Literals. An aggregate atom is f(S) < T, where f(S) is an aggregate
function, <€ {=, <, <,>,>} is a predefined comparison operator, and T is a term
(variable or constant) referred to as guard.

Example 4. The following aggregate atoms in DLV notation, where the latter contains
a ground set and could be a ground instance of the former:

#max{Z : r(Z),a(Z,V)} > Y
#max{(2:7(2),a(2,2)),(2:7(2),a(2,y))} > 1

An atom is either a standard (DLP) atom or an aggregate atom. A literal L is an atom A
or an atom A preceded by the default negation symbol not; if A is an aggregate atom,
L is an aggregate literal.

DLPA Programs. A (DLP#) rule r is a construct

a1 V -+ V an:—b1,--+, by, not bgy1,---, not b
where a1, - - -, a, are standard atoms, by, --,b,, are atoms, andn > 0, m > k > 0,
n + m > 0. The disjunction a; V --- V a, is referred to as the head of r, while the

conjunction by, ..., by, not bgyq,...,not by, is the body of r. A (DLPA) program is a
set of DLP rules.

Syntactic Properties A global variable of a rule r is a variable appearing in a standard
atom of r; all other variables are local variables.

Safety. A rule r is safe if the following conditions hold: (i) each global variable
of r appears in a positive standard literal in the body of r; (ii) each local variable of
r appearing in a symbolic set { Vars : Conj} appears in an atom of Conyj; (iii) each
guard of an aggregate atom of r is a constant or a global variable. A program P is safe
if all 7 € P are safe. In the following we assume that DLP“ programs are safe.

Example 5. Consider the following rules with DLV aggregates:

p(X):—q(X,Y, V), #max{Z : r(Z),a(Z,V)} > Y.
P(X):—q(X.Y,V), #sun{Z : a(Z,5)} > V.
p(X):—q¢(X,Y, V), #min{Z : r(Z),a(Z,V)} > T.

The first rule is safe, while the second is not, since the local variable S violate condition
(ii). The third rule is not safe either, since the guard T violates condition (iii).

® Note that aggregate functions are evaluated on the valuation of a (ground) set w.r.t. an inter-
pretation, which is a multiset, cf. Section 2.2.



Stratification. A DLP* program P is aggregate-stratified if there exists a function
[| ||, called level mapping, from the set of (standard) predicates of P to ordinals, such
that for each pair a and b of standard predicates, occurring in the head and body of a
rule r € P, respectively: (i) if b appears in an aggregate atom, then ||b|| < ||al|, and (ii)
if b occurs in a standard atom, then ||b]| < ||a]-

Example 6. Consider the program consisting of a set of facts for predicates a and b,
plus the following two rules:

q(X):=p(X), #count{Y : a(Y, X),b(X)} < 2. P(X):=q(X), b(X).

The program is aggregate-stratified, as the level mapping |la|| = ||b]| =1, ||p|| =
[lg]| = 2 satisfies the required conditions. If we add the rule b(X):—p(X), then no
such level-mapping exists and the program becomes aggregate-unstratified.

Intuitively, aggregate-stratification forbids recursion through aggregates. While the
semantics of aggregate-stratified programs is more or less agreed upon, different and
disagreeing semantics for aggregate-unstratified programs have been defined in the past,
cf. [4]. In the following we shall provide a novel characterization which directly extends
well-known formulations of semantics for aggregate-free programs.

2.2 Semantics

Universe and Base. Given a DLP program P, let Up denote the set of constants ap-
pearing in P, and Bp the set of standard atoms constructible from the (standard) pred-

. . . . =X .
icates of P with constants in Up. Given a set X, let 2° denote the set of all multisets
over elements from X. Without loss of generality, we assume that aggregate functions
map to I (the set of integers).

Example 7. Let us now describe the domains of the aggregate functions in DLV (where
N and N7 denote the set of non-negative integers and positive integers, respectively):

_ _ _NT
#count is defined over 2U7,° #sum over 2N, #times over 2N, 7 #min and #max are
defined over 2 — {0}.

Instantiation. A substitution is a mapping from a set of variables to Up. A substi-
tution from the set of global variables of a rule r (to Up) is a global substitution for
r; a substitution from the set of local variables of a symbolic set S (to Up) is a local
substitution for S. Given a symbolic set without global variables S = {Vars : Conj},
the instantiation of S is the following ground set of pairs inst(S):

{{(y(Vars) : v(Conj)) | v is a local substitution for S}.2

A ground instance of a rule r is obtained in two steps: (1) a global substitution ¢ for
r is first applied over r; (2) every symbolic set .S in o(r) is replaced by its instantia-
tion inst(S). The instantiation Ground(P) of a program P is the set of all possible
instances of the rules of P.

7 #sum and #times applied over an empty set return 0 and 1, respectively.
8 Given a substitution o and a DLP* object Obj (rule, set, etc.), we denote by o(Obj) the
object obtained by replacing each variable X in Obj by o(X).



Example 8. Consider the following program P;:
q(1) v p(2,2). q(2) Vp(2,1). tH(X):—q(X), #sun{Y : p(X,Y)} > L.
The instantiation Ground(P;) is the following:

q(1) v p(2,2). t(1):—q(1), #sum{(1 : p(1,1)),(2: p(1,2))} > 1.
a(2) Vp(2,1). £(2):=q(2), #sum{(1 : p(2,1)), (2: p(2,2))} > 1.

Interpretation. An interpretation for a DLP program P is a set of standard ground
atoms I C Bp. The truth valuation I(A), where A is a standard ground literal or a
standard ground conjunction, is defined in the usual way. An interpretation also pro-
vides a meaning to (ground) sets, aggregate functions and aggregate literals, namely a
multiset, a value, and a truth value, respectively. Let f(.S) be a an aggregate function.
The valuation I(S) of S w.r.t. I is the multiset of the first constant of the elements
in S whose conjunction is true w.r.t. I. More precisely, let I(.S) denote the multiset
[t1 | (t1, ..., tn: Cong) € SA Conj is true w.r.t. I] The valuation I(f(S)) of an aggre-
gate function f(S) w.r.t. I is the result of the application of f on I(.S). If the multiset
I(S) is not in the domain of f, I(f(S)) = L (where L is a fixed symbol not occurring
in P).

An instantiated aggregate atom A = f(S) < k is true w.r.t. I'if: () I(f(S)) # L,
and, (ii) I(f(S)) < k holds; otherwise, A is false. An instantiated aggregate literal
not A =not f(S) < kistrue w.rt. I'if G) I(f(S)) # L, and, (ii) I(f(S)) < k does
not hold; otherwise, A is false. A rule r is satisfied w.r.t. I if some head atom is true
w.r.t. I whenever all body literals are true w.r.t. I.

Example 9. Consider the atom A = #sum{(1:p(2,1)),(2:p(2,2))} > 1 from Ex-
ample 8. Let S be the ground set in A. For the interpretation I = {q(2), p(2,2),¢(2)},
I(S) = [2], the application of #sum over [2] yields 2, and A is therefore true w.r.t. I,
since 2 > 1. I is a model of the program of Example 8.

Definition 1. A ground literal ¢ is monotone, if for all interpretations 1, .J, such that
I C J, Uis true w.r.t. I implies that { is true w.r.t. J. A ground literal ¢ is antimonotone,
if for all interpretations I, J, such that I C J, { is true w.r.t. J implies that { is true
w.r.t. 1. A ground literal ¢ is nonmonotone, if it is neither monotone nor antimonotone.

Note that positive standard literals are monotone, whereas negative standard literals
are antimonotone. Aggregate literals may be monotone, antimonotone or nonmonotone,
regardless whether they are positive or negative.

Example 10. All ground instances of the following aggregate literals are monotone
#count{Z : r(Z)} > 1 not #count{Z : r(Z)} < 1

while the following are antimonotone:
#count{Z : r(Z)} < 1 not #count{Z : r(Z)} > 1

Nonmonotone literals include the sum over (possibly negative) integers and the av-
erage. Also, most monotone or antimonotone functions combined with the equality
operator yield nonmonotone literals.



2.3 Answer Sets

We will next define the notion of answer sets for DLP“ programs. While usually this is
done by first defining the notion of answer sets for positive programs (coinciding with
the minimal model semantics) and then for negative programs by a stability condition
on a reduct, once aggregates have to be considered, the notions of positive and negative
literals are in general not clear. If only monotone and antimonotone aggregate atoms
were considered, one could simply treat monotone literals like positive literals and an-
timonotone literals like negative ones, and follow the standard approach, as hinted at
in [4]. Since we also consider nonmonotone aggregates, such a categorization is not
feasible, and we rely on a definition which always employs a stability condition on a
reduct.

The subsequent definitions are directly based on models: An interpretation M is a
model of a DLPA program P if all » € Ground(P) are satisfied w.r.t. M. An interpre-
tation M is a subset-minimal model of P if no I C M is a model of Ground(P).

Next we provide the transformation by which the reduct of a ground program w.r.t.
an interpretation is formed. Note that this definition is a generalization of the Gelfond-
Lifschitz transformation for DLP programs (see Theorem 3).

Definition 2. Given a ground DLP program P and an interpretation I, let PT denote
the transformed program obtained from P by deleting rules in which a body literal is
false w.rt. I.

Example 11. Consider Example 2: Ground(P;) = {p(a):—#count{({a : p(a))} >
0.} and Ground(Ps) = {p(a):—#-count{(a : p(a))} < 1.}, and interpretation [; =
{p(a)}, I = 0. Then, Ground(P,)"* = Ground(P;), Ground(P;)"> = {, and
Ground(Pz)"t = 0, Ground(Ps)"? = Ground(P,) hold.

We are now ready to formulate the stability criterion for answer sets.

Definition 3 (Answer Sets for DLP* Programs). Given a DLP* program P, an
interpretation A of Ground(P) is an answer set if it is a subset-minimal model of
Ground(P)4.

Note that any answer set A of P is also a model of P because Ground(P)# C
Ground(P), and rules in Ground(P) — Ground(P)* are satisfied w.r.t. A.

Example 12. For the programs of Example 2, I5 of Example 11 is the only answer
set of Py (because I; is not a minimal model of Ground(P;)), while P, admits no
answer set (I; is not a minimal model of Ground(Pg)Il, and I is not a model of
Ground(Py) = Ground(Py)*.

For Example 1 and the following input facts

company(a). company(b). company(c).
ownsStk(a, b, 40). ownsStk(c, b, 20). ownsStk(a, ¢, 40). ownsStk(b, ¢, 20).

only the set A = {controlsStk(a,a,b,40), controlsStk(a, a, c,40), controlsStk(b, b, c, 20),
controlsStk(c, c,b,20)} (omitting facts) is an answer set, which means that no com-
pany controls another company. Note that A; = A U {controls(a,b), controls(a, c),
controlsStk(a, b, ¢, 20), controlsStk(a, c, b, 20) } is not an answer set, which is reasonable,
since there is no basis for the truth of literals in A; — A.



This definition is a generalization and simplification of the definitions given in [13,
10]. In particular, different to [10], we define answer sets directly on top of the notion
of models of DLP“ programs, rather than transforming them to a positive program.

3 Semantic Properties

A generally desirable and important property of nonmonotonic semantics is minimality
[10,4], in particular a semantics should refine the notion of minimal models. We now
show that our semantics has this property.

Theorem 1. Answer Sets of a DLP# program P are subset-minimal models of P.

Proof. Our proof is by contradiction: Assume that I; is a model of P, I, is an answer
set of P and that I; C I,.° Since I, is an answer set of P, it is a subset-minimal
model of Ground(P)? by Definition 3. Therefore, I; is not a model of Ground(P)?
(otherwise, I would not be a subset-minimal model of Ground(P)b). Thus, some
rule 7 € Ground(P)'2 is not satisfied w.r.t. I;. Since Ground(P)’2 C Ground(P),
r is also in Ground(P) and therefore I; cannot be a model of P, contradicting the
assumption.

Corollary 1. Answer sets of a DLPA program P are incomparable (w.r.t. set inclusion)
among each other.

Theorem 1 can be refined for DLP“ programs containing only monotone literals.

Theorem 2. The answer sets of a DLPA program P, where P contains only monotone
literals, are precisely the minimal models of P.

Proof. Let P be a DLPA program containing only monotone literals, and I be a min-
imal model of P. Clearly, I is also a model of P!. We again proceed by contradiction
and show that no J C I is a model of P!: Assume that such a model .J of P exists
and satisfies all rules in Ground(P)’. All rules in Ground(P) — Ground(P)! are
satisfied by I because their body is false w.r.t. I. But since P contains only monotone
literals, each false literal in [ is also false in J C I, and hence J also satisfies all rules
in Ground(P) — Ground(P)! and would therefore be a model of P, contradicting the
assumption that 7 is a minimal model. Together with Theorem 1, the result follows.

Clearly, a very desirable feature of a semantics for an extended language is that
it properly extends agreed-upon semantics of the base language, so that the semantics
are equal on the base language. Therefore we next show that for DLP programs, our
semantics coincides with the standard answer set semantics. Note that not all semantics
which have been proposed for programs with aggregates meet this requirement, cf. [4].

Theorem 3. Given a DLP program P, an interpretation I is an answer set of P ac-
cording to Definition 3 iff it is an answer set of P according to the standard definition
via the classic Gelfond-Lifschitz transformation [11].

° Throughout the paper, C denotes strict set inclusion.



Proof. (=): Assume that I is an answer set w.r.t. Definition 3, i.e. I is a minimal model
of Ground(P)”. Let us denote the standard Gelfond-Lifschitz transformed program by
GL(Ground(P),I). For each r € Ground(P)! some r' € GL(Ground(P),I) ex-
ists, which is obtained from r by removing all negative literals. Since r € Ground(P)?,
all negative literals of r are true in I, and also in all J C . For rules of which an
" € GL(Ground(P), I) exists but no corresponding rule in Ground(P)!, some pos-
itive body literal of r is false w.r.t. I (hence 7" is not included in Ground(P)’), and
also false w.r.t. all J C I. Therefore (i) I is a model of GL(Ground(P), I) and (ii) no
J C I is amodel of GL(Ground(P),I), as it would also be a model of Ground(P)*
and I thus would not be a minimal model of Ground(P)?. Hence I is a minimal model
of GL(Ground(P), I) whenever it is a minimal model of Ground(P)?.

(«<): Now assume that [ is a standard answer set of P, that is, / is a minimal model
of GL(Ground(P), I). By similar reasoning as in (=) arule r € GL(Ground(P),I)
with true body w.r.t. I has a corresponding rule 7’ € Ground(P)! which contains the
negative body of the original rule 7° € Ground(P), which is true w.r.t. all J C I. Any
rule 7"’ € GL(Ground(P), I) with false body w.r.t. I is not contained in Ground(P)?,
but it is satisfied in each J C I. Therefore (i) I is a model of Ground(P)! and
(i) no J C [ is a model of Ground(P)I (otherwise J would also be a model of
GL(Ground(P),I)). As a consequence, I is a minimal model of Ground(P)! when-
ever it is a minimal model of GL(Ground(P),I).

4 Computational Complexity

4.1 Complexity Framework

We analyze the complexity of DLP on Cautious Reasoning, a main reasoning task
in nonmonotonic formalisms, amounting to the following decisional problem: Given a
DLPA program P and a standard ground atom A, is A true in all answer sets of 7?

We consider propositional (i.e., variable-free) DLP# programs, and polynomial-
time computable aggregate functions (note that all sample aggregate functions appear-
ing in this paper fall into this class).

4.2 Overview of Complexity Results

Table 1 summarizes the complexity results derived in the next sections. The rows spec-
ify the allowance of negation (not); the columns specify the allowance of aggregates,
namely: M = stratified monotone aggregates, M = full (possibly recursive) monotone
aggregates, A, = stratified antimonotone aggregates, A = full antimonotone aggregates,
N, = stratified nonmonotone aggregates, and N = full nonmonotone aggregates.

The good news is that the addition of aggregates does not increase the complex-
ity of disjunctive logic programming. Cautious reasoning on the full DLP language,
including all considered types of aggregates (monotone, antimonotone, and nonmono-
tone) even unstratified, remains 11 f -complete, as for standard DLP.

The most “benign” aggregates, from the complexity viewpoint, are the monotone
ones, whose addition does never cause any complexity increase, even for negation-free
programs, and even for unstratified monotone aggregates.



Table 1. The Complexity of Cautious Reasoning on Disjunctive Programs with Aggregates

0 {M} M} {A} {N} {Ms, As, N} {A} {N} {M, A, N}

negation-free co-NP co-NP co-NP oy nr ar ot or nr
with negation 113  11¥ mnf nof ot oy oy mr Jice

On negation-free programs, the addition of either antimonotone or nonmonotone
aggregates increases the complexity, jumping from co-NP to I71°. In all other cases, the
complexity remains the same as for standard programs.

4.3 Proofs of Hardness Results

An important observation is that negation can be rewritten to an antimonotone aggre-
gate. It is therefore possible to turn aggregate-free programs with negation into corre-
sponding positive programs with aggregates.

Definition 4. Given an (aggregate-free) DLP program P, let I'(P) be the DLPA pro-
gram, which is obtained by replacing each negative literal not a in P by #count{(e :
a)} < 1, where € is an arbitrary constant.

Theorem 4. Each aggregate-free DLP program P can be transformed into an equiva-
lent positive DLPA program T’ (P) with aggregate literals (all of which are antimono-
tone). If P is stratified w.r.t. negation, then I' (P) is aggregate-stratified (i.e., all aggre-
gates in I'(P) are nonrecursive).

Proof. Note that for any interpretation I, not a is true w.r.t. I iff #count{(e: a)} <1
is true w.r.t. I, and that #count{(e : a)} < 1 is an antimonotone aggregate literal. By
virtue of Theorem 3, our answer sets semantics (as in Definition 3) is equivalent to the
standard answer set semantics. Thus, since the valuation of literals is equal in P and
I'('P), both programs have the same answer sets.

Since aggregates take the place of negative literals, if the latter are nonrecursive in
P (i.e., P is stratified w.r.t. negation), the former are nonrecursive as well (i.e., I'(P) is
aggregate-stratified).

Theorem 5. Let P be a DLP program. Then (i) I'(P) has the same size (i.e., number
of rules and literals) as P, and (ii) I'(P) is LOGSPACE computable from P.

Proof. The I'(P) transformation replaces each negative literal by an aggregate atom;
and it does not add any further literal to the program. Therefore it does not increase
the program size. It is easy to see that I'(P) can be computed by a LOGSPACE Turing
Machine. Indeed, I'(P) can be generated by dealing with one rule of P at a time,
without storing any intermediate data apart from a fixed number of indices.

Finally, we state the relation between antimonotone and nonmonotone literals.

Theorem 6. Each DLP# program, whose aggregates are all antimonotone, can be
transformed into an equivalent program, whose aggregates are all nonmonotone.



Proof. W.l.o.g. we will consider a ground program P. We transform each antimonotone
aggregate literal [ containing the aggregate atom f(S) < k to I’ containing f!(S’) < k.
We introduce three fresh constants 7, €, and v and a new predicate symbol II. Let f!
be undefined for the multisets [7] and [, €, v] and return a value making [ true for [, €]
(such a value does always exist); otherwise f Uis equal to f. Furthermore, S’ is obtained
by adding (7 : II(7)), (¢ : II(€)), and (v : II(v)) to the ground set S. The transformed
program P’ contains only nonmonotone aggregates and is equivalent to P.

Theorem 7. Each field of Table 1 states the proper hardness of the corresponding frag-
ment of DLPA.

Proof. The hardness results for all fields in the second row of Table 1 stem from the
ITF -hardness of disjunctive programs with negation [14].'° The same result, together
with Theorems 4 and 5, entails 74 -hardness of all the DLP* fragments admitting
antimonotone aggregates. /11 -hardness of all the DLP“ fragments with nonmonotone
aggregates then follows from Theorem 6. Finally, the results in the first three entries in
the first row stem from the co-NP-hardness of positive disjunctive programs [14].

4.4 Proofs of Membership Results
In the membership proofs, we will implicitly use the following lemma:

Lemma 1. Given an interpretation I for a DLP* program P, the truth valuation of an
aggregate atom L is computable in polynomial time.

Proof. Let L = f(T) < k. To determine the truth valuation of L, we have to: (i)
compute the valuation I (7") of the ground set 7" w.r.t. I, (ii) apply the aggregate function
fon I(T), and (iii) compare the result of f(I(T)) with k w.r.t. <.

Computing the valuation of a ground set 7" only requires scanning each element
(t1,..y ty o Cong) of T, adding t; to the result multiset if Cony is true w.r.t. 1. This
is evidently polynomial, as is the application of the aggregate function on I(7") in our
framework (see Section 4.1). The comparison with k, finally, is straightforward.

Lemma 2. Let P be a negation-free DLPA program, whose aggregates are all mono-
tone. A standard ground atom A is not a cautious consequence of P, if and only if there
exists a model M of P which does not contain A."!

Proof. Observe first that, since P does not contain negation and only monotone aggre-
gate literals, each literal appearing in P is monotone.

(«<=): The existence of a model M of P not containing A, implies the existence of
a minimal model M’ of P (with M’ C M) not containing A. By virtue of Theorem 2,
M’ is an answer set of P. Therefore, A is not a cautious consequence of P.

(=): Since A is not a cautious consequence of P, by definition of cautious rea-
soning, there exists an answer set M of P which does not contain A. By definition of
answer sets, M is also a model of P, as remarked after Definition 3.

10 Recall that even for stratified negation cautious reasoning on disjunctive programs is 172 -hard.
1 Note that M can be any model, possibly non-minimal, of P.



Theorem 8. Cautious reasoning over negation-free disjunctive programs, whose ag-
gregates are all monotone, is in co-NP.

Proof. By Lemma 2 we can check whether a ground atom A is not a cautious conse-
quence of a program P as follows: (i) Guess an interpretation M of P, (ii) check that
M is a model and a ¢ M. The check is clearly polynomial-time computable, and the
problem is therefore in co-NP.

Lemma 3. Checking whether an interpretation M is an answer set of an arbitrary
DLPA program P is in co-NP.

Proof. To prove that M is not an answer set of P, we guess an interpretation M’ of P,
and check that (at least) one of the following conditions hold: (i) M’ is a model of pM,
and M’ C M, or (ii) M is not a model of PM . The checking of both conditions above
is clearly in polynomial time, and the problem is therefore in co-NP.

Theorem 9. Cautious reasoning over arbitrary DLP programs is in 1T .

Proof. We verify that a ground atom A is not a cautious consequence of a DLP* pro-
gram P as follows: Guess an interpretation M/ C Bp and check that (1) M is an answer
set for P, and (2) A is not true w.r.t. M. Task (2) is clearly polynomial, while (1) is in
co-NP by virtue of Lemma 3. The problem therefore lies in 172,

5 Related Work and Conclusions

There have been considerable efforts to define semantics for logic programs with recur-
sive aggregates, but most works do not consider disjunctive programs or do not cover
all kinds of aggregates. In [4] a partial stable semantics for non-disjunctive programs
with aggregates has been defined, for which the “standard” total stable semantics is a
special case, while in [8] a stable semantics for disjunctive programs with has been
given; but only monotone aggregates are considered. These semantics guarantee the
same benign properties as ours, namely minimality and coincidence with answer sets in
the aggregate-free case. On the respective language fragment, [4] intuitively coincides
with our semantics (but a formal demonstration is still to be done). For [8] there is a
slight difference when an aggregate function in a negative literal is undefined. E.g., the
program {cheap :— not #max{X : salary(X)} > 1000} without facts for salary would
yield the answer set {cheap} w.r.t. [8], while our semantics admits only ().

A thorough discussion of pros and cons for the various approaches for recursive
aggregates has been given in [4, 15], so we will only briefly compare our approach with
previous ones on typical examples.

The approaches of [2,6,7] basically all admit non-minimal answer sets. In partic-
ular, program P; of Example 2 would have () and {p(a)} as answer sets. As shown in
Example 12 (also by Theorem 1), the semantics proposed in this paper only admits ().

The approach of [13] is defined on non-disjunctive programs with particular kinds
of aggregates (called cardinality and weight constraints), which basically correspond
to programs with count and sum functions. As shown in [4] and [16], in presence of



negative weights or negative literals inside aggregates'?, the semantics in [13] can lead
to unintuitive results. For example, the program {a:—#sum{(—1 : a)} < —1.} should
intuitively have only () as an answer set, as {a} would not be minimal and the truth
of a is not founded. However, according to [13], both @) and {a} are answer sets. Our
semantics only allows for () as an answer set, according to the intuition. An extension to
the approach of [13] has been presented in [10], which allows for arbitrary aggregates
in non-disjunctive programs.

Finally, the work in [17] deals with the more abstract concept of generalized quan-
tifiers, and the semantics therein shares several properties with ours.

Concluding, we proposed a declarative semantics for disjunctive programs with ar-
bitrary aggregates. We demonstrated that our semantics is endowed with desirable prop-
erties. Importantly, we proved that aggregate literals do not increase the computational
complexity of disjunctive programs in our approach. Future work concerns the design
of efficient algorithms for the implementation of our proposal in the DLV system. Upon
completion of this paper, we have learned that yet another semantics has been indepen-
dently proposed in [15]; studying the relationship to it is also a subject for future work.
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