
New DLV Features for Data Integration?

Francesco Calimeri1, Manuela Citrigno1, Chiara Cumbo1, Wolfgang Faber2,
Nicola Leone1, Simona Perri1, and Gerald Pfeifer2

1 Department of Mathematics, University of Calabria - 87030 Rende (CS), Italy
{calimeri,citrigno,cumbo,leone,perri}@mat.unical.it

2 Institut für Informationssysteme, TU Wien - A-1040 Wien, Austria
faber@kr.tuwien.ac.at gerald@pfeifer.com

Abstract. The DLV system is currently employed in projects on data in-
tegration – a challenging application area for Answer Set Programming.
The present system description illustrates some new optimization tech-
niques, which significantly enhance the general performance of DLV, and
especially in the context of data integration.

1 Introduction

The integration of (possibly inconsistent) data from different sources is one of
the most promising applications of Answer Set Programming [5, 1, 3, 14]. Recent
studies [2, 10, 4, 7, 5] showed that query answering in data integration is often
complete for the complexity class co-NP, or even for ΠP

2
. This high computa-

tional complexity is mainly due to the necessity of handling inconsistencies (e.g.,
violations of key constraints) in the “integrated” database DB, which are due
to conflicting data coming from different sources.

The (consistent) answer to a query q(X) over a (possibly inconsistent) Data
Integration System DB can be obtained by generating a logic program LP such
that the stable models of LP yield the repairs1 of DB. Answering the query
q(X) over the data integration system then amounts to cautious reasoning over
the logic program LP [5, 14, 3], which can be performed by an ASP engine.

At the time being, the DLV system [12] is the most “database oriented” ASP
engine, and it seems to be the best-suited ASP system for data-integration tasks.
The suitability of DLV for data integration is backed by its use in relevant works
in data integration, like [5, 14, 3] and by an IST project funded by the European
Commission focusing on the exploitation of DLV for information integration (IN-
FOMIX project, IST-2001-33570). Furthermore, in the experiments reported in
[3], which also considered QBF, SAT, and CLP systems, DLV outperforms the
compared systems on database repairing in the majority of cases.

However, as observed also in [5], DLV would be much more effective in database
applications if it could take advantage of suitable optimization methods that
speed up the evaluation of queries expressed as logic programs.

? This works was supported by the European Commission, under projects INFOMIX
(IST-2001-33570), and WASP (IST-2001-37004).

1 Intuitively, a repair is a maximal consistent subset of the database.



The present system description illustrates some recent enhancements in this
direction [8, 11], which have not been demonstrated to a broader audience yet.
In particular, we focus on the following optimization techniques.
(i) Query oriented techniques for binding propagation (Magic Sets) [8]. Intu-
itively, the adoption of binding propagation techniques in Disjunctive Logic Pro-
gramming (DLP) allows us to exploit constants appearing in the query and the
program, reducing the size of the instantiation by avoiding “a priori” the gen-
eration of many ground instances of the rules which cannot contribute to the
derivation of the query goal.
(ii) Backjumping techniques for the program instantiation [11]. The application
of a new, structure-based backjumping method to the instantiation process of
DLV significantly reduces the instantiation time and, very importantly, limits the
size of the instantiation by generating, for each program rule, only a relevant
subset of all its possible ground instances.

The design and implementation of these optimizations is an important step
towards the concrete use of ASP systems in real-life applications.

2 Improving DLP instantiators for larger data

manipulations

The kernel modules of most ASP systems operate on a ground instantiation of the
input program [9]. Any input program P is first submitted to an instantiation
process, which may be computationally very expensive. Thus, having a good
instantiator is a key feature. It should produce a ground program P ′ having the
same answer sets as P such that: (i) P ′ can be computed efficiently from P , and
(ii) P ′ is as small as possible.

The main reason for large ground programs even for small input programs is
that each atom of a rule in a program P may be instantiated to many atoms in
the Herbrand base, which leads to a combinatorial explosion. However, most of
these atoms may not be derivable whatsoever, and hence such instantiations do
not render applicable rules. A good instantiator thus generates ground instances
of rules containing only atoms which might be derivable from P.

At each step of an instantiation by DLV, there is a number of predicates,
called solved, such that the (total) truth values of all their ground instances
have already been determined by the instantiator. For instance, all predicates
defined only by facts are solved. Occurrences of these predicates can be safely
omitted from the resulting ground program; it suffices to include asserting facts
for each true ground instances of solved predicates.

In other words, we are not interested in all “consistent” substitutions for
all variables, but rather in their restrictions to the variables that occur in lit-
erals over unsolved predicates. To this end, we designed and implemented a
new backjumping-based instantiation method. In particular, given a rule r to
be instantiated, our algorithm exploits both the semantical and the structural
information about r in order to compute only a relevant subset of all its possible
ground instances (see [11] for a detailed illustration).



Example 1. Consider the rule r1 below, where predicates q3, q4 and q5 are solved.
The following are all applicable ground instances of r1.

r1 : a(X, Z) :- q1(X, Z, Y ), q2(W, T, S), q3(V, T, H), q4(Z, H), q5(T, S, V ).

a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1), q3(v1, t1, h1), q4(z1, h1), q5(t1, s1, v1).
a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1), q3(v2, t1, h1), q4(z1, h1), q5(t1, s1, v2).

...
a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1), q3(v100, t1, h100), q4(z1, h100), q5(t1, s1, v100).

All these 10000 rules are semantically equivalent to a single instance, which is
the only one computed by our algorithm: a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1).

3 Magic Sets for DLP

The Magic Sets method [13] is a strategy for simulating the top-down evaluation
of a query using a bottom-up evaluation procedure. It modifies the original
program by means of certain rules, that act as filters for the relevant information.
Roughly, the goal is to use the constants appearing in the query and the program
in order to reduce the size of the instantiation by eliminating “a priori” some
ground instances of the rules which are irrelevant for the query goal.

In [8] the Magic Set algorithm has been extended to DLPs. While in non-
disjunctive programs, bindings are propagated only head-to-body, any rewriting
for DLPs has to propagate bindings also head-to-head in order to preserve sound-
ness. For instance, consider the rule p(X) v q(Y ) :- a(X, Y ), r(X) and the query
p(1)? on a program Π. Even though the query propagates the binding for the
predicate p, in order to correctly answer the query, we also need to evaluate
the truth value of q(Y ), which indirectly receives the binding through the body
predicate a(X,Y ). If the program contains facts a(1, 2), and r(1), then atom q(2)
is relevant for the query, since the truth of q(2) would invalidate the derivation
of p(1) from the above rule (because of minimality in the semantics). This shows
that the bindings also have to be propagated head-to-head.

An extension of Magic Sets to DLP has been implemented in DLV, resulting
in an algorithm called DMS [8].

Example 2 (Strategic Companies [6]). A collection C of companies produces
some goods in a set G; each company ci ∈ C is controlled by a set of other
companies Oi ⊆ C. C ′ ⊂ C is a strategic set if it is a minimal set of companies
producing all the goods in G, such that if Oi ⊆ C ′ for some i = 1, . . . ,m then
ci ∈ C ′ must hold. This scenario can be modeled by means of a program Psc:

r1 : sc(C1) v sc(C2) :- produced by(P, C1, C2).
r2 : sc(C) :- controlled by(C, C1, C2, C3), sc(C1), sc(C2), sc(C3).

Moreover, given a company c ∈ C, we consider a query Qsc = sc(c) asking
whether c belongs to some strategic set of C. The output of DMS is the following
program, which in general is much more efficient for answering Qsc [8].



magic scb(c).

magic scb(C2) :- magic scb(C1), produced by(P, C1, C2).

magic scb(C1) :- magic scb(C2), produced by(P, C1, C2).

magic scb(C1) :- magic scb(C), controlled by(C, C1, C2, C3).

magic scb(C2) :- magic scb(C), controlled by(C, C1, C2, C3).

magic scb(C3) :- magic scb(C), controlled by(C, C1, C2, C3).

r′

1m
: sc(C1) v sc(C2) :- magic scb(C1), magic scb(C2), produced by(P, C1, C2).

r′′

1m
: sc(C2) v sc(C1) :- magic scb(C2), magic scb(C1), produced by(P, C1, C2).

r2m
: sc(C) :- magic scb(C), controlled by(C, C1, C2, C3), sc(C1), sc(C2), sc(C3).

4 Conclusions

We have described some of the most recent enhancements of DLV. These have been
motivated by applications in data integration, where large amounts of data are
to be processed and scalability is a very important issue. Their practical impact
has been assessed by many experiments [8, 11], with very positive results.

References

1. INFOMIX project (IST-2001-33570). http://www.mat.unical.it/infomix/.
2. M. Arenas, L. E. Bertossi, and J. Chomicki. Specifying and querying database

repairs using logic programs with exceptions. pp. 27–41, 2000.
3. O. Arieli, M. Denecker, B. Van Nuffelen, and M. Bruynooghe. Database repair by

signed formulae. In Proceedings of FoIKS 2004, LNCS 2942, pp. 14–30, 2004.
4. P. Barceló and L. Bertossi. Repairing databases with annotated predicate logic.

NMR 2002.
5. L. Bravo and L. E. Bertossi. Logic Programs for Consistently Querying Data

Integration Systems. In Proceedings of IJCAI’03, pp. 10–15, 2003.
6. M. Cadoli, T. Eiter, and G. Gottlob. Default Logic as a Query Language. IEEE

TKDE, 9(3):448–463, 1997.
7. A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under constraints

in data integration systems. In Proceedings of IJCAI 2003, pp. 16–21.
8. C. Cumbo, W. Faber, G. Greco, and N. Leone. Enhancing the Magic Set Method

for Disjunctive Datalog Programs. In Proceedings of ICLP 2004. To appear.
9. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A Deductive System

for Nonmonotonic Reasoning. In Proceedings of LPNMR 1997, n.1265, LNAI, pp.
363–374.

10. G. Greco, S. Greco, and E. Zumpano. A logic programming approach to the
integration, repairing and querying of inconsistent databases. v.2237 of LNAI, pp.
348–364, 2001.

11. N. Leone, S. Perri, and F. Scarcello. Backjumping Techniques for Rules Instanti-
ation in the DLV System. In Proceedings of NMR2004, pp. 258–266.

12. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The DLV System for Knowledge Representation and Reasoning. ACM TOCL,
2004. To appear. Available via http://www.arxiv.org/ps/cs.AI/0211004.

13. J. D. Ullman. Principles of Database and Knowledge Base Systems, 1989.
14. D. Lembo, M. Lenzerini, and R. Rosati. Source Inconsistency and Incompleteness

in Data Integration. KRDB 2002.


