
Unfounded Sets for Disjunctive Logic Programs with
Arbitrary Aggregates⋆

Wolfgang Faber

Department of Mathematics, University of Calabria, 87030 Rende (CS), Italy
faber@mat.unical.it

Abstract. Aggregates in answer set programming (ASP) have recently been stud-
ied quite intensively. The main focus of previous work has been on defining suit-
able semantics for programs with arbitrary, potentially recursive aggregates. By
now, these efforts appear to have converged. On another line of research, the re-
lation between unfounded sets and (aggregate-free) answer sets haslately been
rediscovered. It turned out that most of the currently available answer set solvers
rely on this or closely related results (e.g., loop formulas).
In this paper, we unite these lines and give a new definition of unfounded sets for
disjunctive logic programs with arbitrary, possibly recursive aggregates. While
being syntactically somewhat different, we can show that this definition properly
generalizes all main notions of unfounded sets that have previously been defined
for fragments of the language.
We demonstrate that, as for restricted languages, answer sets can be crisply char-
acterized by unfounded sets: They are precisely the unfounded-free models. This
result can be seen as a confirmation of the robustness of the definition ofan-
swer sets for arbitrary aggregates. We also provide a comprehensive complexity
analysis for unfounded sets, and study its impact on answer set computation.

1 Introduction

The introduction of aggregate atoms [1–8] is one of the majorlinguistic extensions to
Answer Set Programming of the recent years. While both semantic and computational
properties of standard (aggregate-free) logic programs have been deeply investigated,
relatively few works have focused on logic programs with aggregates; some of their
semantic properties and their computational features are still far from being fully clari-
fied.

The proposal for answer set semantics in [8] seems to be receiving a consensus. Re-
cent works, such as [9, 10] give further support for the plausibility of this semantics by
relating it to established constructs for aggregate-free programs. In particular, [9] pre-
sented a semantics for very general programs, and showed that it coincides with both
answer sets of [8] and Smodels answer sets (the latter holds for weight constraints with
positive weights only). In [10] the notion of unfounded setsis extended from aggregate-
free programs to programs with aggregates in a conservativeway, retaining important

⋆ This work was supported by an APART grant of the Austrian Academy ofSciences and the
European Commission under projects IST-2002-33570 INFOMIX, IST-2001-37004 WASP.

semantical and computational properties. It should be noted that unfounded sets are the
basis of virtually all currently available ASP solvers [11,4, 12–15]. Extending this no-
tion to programs with aggregates should therefore be seen aspaving the way to effective
and efficient systems for programs with aggregates.

However, in [10] only a fragment of the language has been considered, namely
nondisjunctive programs with monotone and antimonotone aggregates. In this paper
we lift this restriction and define unfounded sets fordisjunctiveprograms witharbitrary
aggregates. To this end, some substantial change in the definition is necessary to account
for nonmonotone aggregates. Nevertheless, we are able to prove that our definition is
a clean extension of all main previous notions of unfounded sets: On the respective
fragments, our unfounded sets always coincide with the previously proposed ones.

Importantly, we can show that our notion of unfounded sets crisply characterizes
both models and answer sets of [8] for arbitrary programs. Wealso study complexity
issues for unfounded sets and put them into perspective withrespect to complexity
of reasoning tasks on answer sets for various fragments of programs with aggregates.
Finally, we discuss the impact of our results on computation.

Summarizing, our contributions are as follows:

– We define the notion of unfounded sets fordisjunctivelogic programs witharbi-
trary aggregates. We demonstrate that this notion is a sound generalization of all
main previous concepts of unfounded sets.

– We analyze the properties of our unfounded sets, which parallel those of previous
definitions. We show that a unique greatest unfounded set always exists for the class
of unfounded-free interpretations.

– We characterize answer sets in terms of unfounded sets. One of the results is that a
model is an answer sets iff it is unfounded-free.

– We study the complexity of determining unfounded-freenessof an interpretation,
and deduce the complexity for answer set checking, which turns out to be a crucial
factor for the complexity of query answering.

– We indicate applications of our results; in particular, they allow to conceive how to
build efficient systems for computing answer sets for programs with aggregates.

2 Logic Programs with Aggregates

2.1 Syntax

We assume that the reader is familiar with standard LP; we refer to the respective con-
structs asstandard atoms, standard literals, standard rules, andstandard programs.
Two literals are said to be complementary if they are of the form p andnot p for some
atomp. Given a literalL, ¬.L denotes its complementary literal. Accordingly, given a
setA of literals,¬.A denotes the set{¬.L | L ∈ A}. For further background, see [16,
17].

Set Terms. A DLPAset termis either a symbolic set or a ground set. Asymbolic set
is a pair{Vars :Conj}, whereVars is a list of variables andConj is a conjunction of

standard atoms.1 A ground setis a set of pairs of the form〈t :Conj 〉, wheret is a list of
constants andConj is a ground (variable free) conjunction of standard atoms.

Aggregate Functions. An aggregate functionis of the formf(S), whereS is a set
term, andf is anaggregate function symbol. Intuitively, an aggregate function can be
thought of as a (possibly partial) function mapping multisets of constants to a constant.

Example 1. In the examples, we adopt the syntax ofDLV to denote aggregates.Aggre-
gate functions currently supported by the DLV system are:#count (number of terms),
#sum (sum of non-negative integers),#times (product of positive integers),#min

(minimum term),#max (maximum term)2.

Aggregate Literals. An aggregate atomis f(S) ≺ T , wheref(S) is an aggregate
function,≺∈ {=, <, ≤, >,≥} is a predefined comparison operator, andT is a term
(variable or constant) referred to as guard.

Example 2.The following aggregate atoms are in DLV notation, where thelatter con-
tains a ground set and could be a ground instance of the former:

#max{Z : r(Z), a(Z, V)} > Y #max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atomis either a standard atom or an aggregate atom. Aliteral L is an atomA or an
atomA preceded by the default negation symbolnot; if A is an aggregate atom,L is
anaggregate literal.

DLPA Programs. A DLPA rule r is a construct

a1 ∨ · · · ∨ an :− b1, . . . , bk, not bk+1, . . . , not bm.

wherea1, · · · , an are standard atoms,b1, · · · , bm are atoms, andn ≥ 1, m ≥ k ≥ 0.
The disjunctiona1 ∨ · · · ∨ an is referred to as theheadof r while the conjunction
b1, ..., bk, not bk+1, ..., not bm is the body of r. We denote the set of head atoms
by H(r), and the set{b1, ..., bk, not bk+1, ..., not bm} of the body literals byB(r).
B+(r) andB−(r) denote, respectively, the set of positive and negative literals inB(r).
Note that this syntax does not explicitly allow integrity constraints (rules without head
atoms). They can, however, be simulated in the usual way by using a new symbol and
negation.

A DLPA programis a set of DLPA rules. In the sequel, we will often drop DLPA,
when it is clear from the context. Aglobal variable of a ruler appears in a standard
atom ofr (possibly also in other atoms); all other variables arelocal variables.

Safety. A rule r is safeif the following conditions hold: (i) each global variable of
r appears in a positive standard literal in the body ofr; (ii) each local variable ofr
appearing in a symbolic set{Vars : Conj} appears in an atom ofConj ; (iii) each
guard of an aggregate atom ofr is a constant or a global variable. A programP is safe
if all r ∈ P are safe. In the following we assume that DLPA programs are safe.

1 Intuitively, a symbolic set{X : a(X, Y), p(Y)} stands for the set ofX-values making
a(X, Y), p(Y) true, i.e.,{X |∃Y s.t . a(X, Y), p(Y) is true}.

2 The first two aggregates roughly correspond, respectively, to the cardinality and weight con-
straint literals of Smodels.#min and#max are undefined for empty set.

2.2 Answer Set Semantics

Universe and Base. Given a DLPA programP, let UP denote the set of constants
appearing inP, andBP be the set of standard atoms constructible from the (stan-
dard) predicates ofP with constants inUP . Given a setX, let 2

X
denote the set of all

multisets over elements fromX. Without loss of generality, we assume that aggregate
functions map toI (the set of integers).

Example 3.#count is defined over2
UP, #sum over2

N
, #times over2

N
+

, #min and
#max are defined over2

N
− {∅}.

Instantiation. A substitutionis a mapping from a set of variables toUP . A substi-
tution from the set of global variables of a ruler (to UP) is a global substitution for
r; a substitution from the set of local variables of a symbolicsetS (to UP) is a local
substitution forS. Given a symbolic set without global variablesS = {Vars : Conj},
the instantiation ofS is the following ground set of pairsinst(S):
{〈γ(Vars) : γ(Conj)〉 | γ is a local substitution forS}.3

A ground instanceof a ruler is obtained in two steps: (1) a global substitutionσ for
r is first applied overr; (2) every symbolic setS in σ(r) is replaced by its instantia-
tion inst(S). The instantiationGround(P) of a programP is the set of all possible
instances of the rules ofP.

Interpretations. An interpretationfor a DLPA programP is a consistent set of stan-
dard ground literals, that isI ⊆ (BP ∪¬.BP) such thatI∩¬.I = ∅. A standard ground
literal L is true (resp. false) w.r.tI if L ∈ I (resp.L ∈ ¬.I). If a standard ground literal
is neither true nor false w.r.tI then it is undefined w.r.tI. We denote byI+ (resp.I−)
the set of all atoms occurring in standard positive (resp. negative) literals inI. We de-
note byĪ the set of undefined atoms w.r.t.I (i.e.BP \ I+ ∪ I−). An interpretationI is
total if Ī is empty (i.e.,I+ ∪ ¬.I− = BP), otherwiseI is partial.

An interpretation also provides a meaning for aggregate literals. Their truth value is
first defined for total interpretations, and then generalized to partial ones.

Let I be a total interpretation. A standard ground conjunction istrue (resp. false)
w.r.t I if all its literals are true (resp. false). The meaning of a set, an aggregate function,
and an aggregate atom under an interpretation, is a multiset, a value, and a truth-value,
respectively. Letf(S) be a an aggregate function. The valuationI(S) of S w.r.t. I is
the multiset of the first constant of the elements inS whose conjunction is true w.r.t.I.
More precisely, letI(S) denote the multiset[t1 | 〈t1, ..., tn :Conj 〉 ∈S∧ Conj is true
w.r.t. I]. The valuationI(f(S)) of an aggregate functionf(S) w.r.t. I is the result of the
application off on I(S). If the multisetI(S) is not in the domain off , I(f(S)) = ⊥
(where⊥ is a fixed symbol not occurring inP).

An instantiated aggregate atomA of the form f(S) ≺ k is true w.r.t. I if: (i)
I(f(S)) 6= ⊥, and, (ii) I(f(S)) ≺ k holds; otherwise,A is false. An instantiated
aggregate literalnot A = not f(S) ≺ k is true w.r.t.I if (i) I(f(S)) 6= ⊥, and, (ii)
I(f(S)) ≺ k does not hold; otherwise,A is false.

3 Given a substitutionσ and a DLPA objectObj (rule, set, etc.), we denote byσ(Obj) the
object obtained by replacing each variableX in Obj by σ(X).

If I is apartial interpretation, an aggregate literalA is true (resp. false) w.r.t.I if it
is true (resp. false) w.r.t.each totalinterpretationJ extendingI (i.e.,∀ J s.t.I ⊆ J ,
A is true (resp. false) w.r.t.J); otherwise it is undefined.

Example 4.Consider the atomA = #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉} > 1. Let S be the
ground set inA. For the interpretationI = {p(2, 2)}, each extending total interpretation
contains eitherp(2, 1) or not p(2, 1). Therefore, eitherI(S) = [2] or I(S) = [1, 2] and
the application of#sum yields either2 > 1 or 3 > 1, henceA is true w.r.t.I.

Remark 1. Our definitions of interpretation and truth valuespreserve “knowledge mono-
tonicity”. If an interpretationJ extendsI (i.e., I ⊆ J), then each literal which is true
w.r.t. I is true w.r.t.J , and each literal which is false w.r.t.I is false w.r.t.J as well.

Minimal Models. Given an interpretationI, a ruler is satisfied w.r.t.I if some head
atom is true w.r.t.I whenever all body literals are true w.r.t.I. A total interpretation
M is amodelof a DLPA programP if all r ∈ Ground(P) are satisfied w.r.t.M . A
modelM for P is (subset) minimal if no modelN for P exists such thatN+ ⊂ M+.
Note that, under these definitions, the wordinterpretationrefers to a possibly partial
interpretation, while amodelis always a total interpretation.

Answer Sets. We now recall the generalization of the Gelfond-Lifschitz transforma-
tion and answer sets for DLPA programs from [8]: Given a ground DLPA programP
and a total interpretationI, letPI denote the transformed program obtained fromP by
deleting all rules in which a body literal is false w.r.t.I. I is an answer set of a program
P if it is a minimal model ofGround(P)I .

Example 5.Consider interpretationI1 = {p(a)}, I2 = {not p(a)} and two programs
P1 = {p(a) :− #count{X : p(X)} > 0.} andP2 = {p(a) :− #count{X : p(X)} < 1.}.

Ground(P1) = {p(a) :− #count{〈a : p(a)〉} > 0.} andGround(P1)
I1 = Ground(P1),

Ground(P1)
I2 = ∅. Furthermore,Ground(P2) = {p(a) :− #count{〈a : p(a)〉} < 1.}, and

Ground(P2)
I1 = ∅, Ground(P2)

I2 = Ground(P2) hold.
I2 is the only answer set ofP1 (sinceI1 is not a minimal model ofGround(P1)

I1),
while P2 admits no answer set (I1 is not a minimal model ofGround(P2)

I1 , andI2 is
not a model ofGround(P2) = Ground(P2)

I2).

Note that any answer setA of P is also a model ofP becauseGround(P)A ⊆
Ground(P), and rules inGround(P) − Ground(P)A are satisfied w.r.t.A.

Monotonicity. Given two interpretationsI andJ we say thatI ≤ J if I+ ⊆ J+ and
J− ⊆ I−. A ground literalℓ is monotone, if for all interpretationsI, J , such thatI ≤ J ,
we have that: (i)ℓ true w.r.t.I impliesℓ true w.r.t.J , and (ii) ℓ false w.r.t.J impliesℓ

false w.r.t.I. A ground literalℓ is antimonotone, if the opposite happens, that is, for all
interpretationsI, J , such thatI ≤ J , we have that: (i)ℓ true w.r.t.J impliesℓ true w.r.t.
I, and (ii)ℓ false w.r.t.I impliesℓ false w.r.t.J . A ground literalℓ is nonmonotone, if it
is neither monotone nor antimonotone.

Note that positive standard literals are monotone, whereasnegative standard literals
are antimonotone. Aggregate literals may be monotone, antimonotone or nonmonotone,
regardless whether they are positive or negative. Nonmonotone literals include the sum
over (possibly negative) integers and the average.

3 Unfounded Sets

We now give a definition of unfounded set for arbitrary DLPA programs. It should be
noted that it is not possible to just take over the previous definitions in [18, 11, 10], as
all of them make a distinction on the kind of atoms, be it positive and negative atoms, or
the generalized version of monotone and antimonotone atoms. Just as in [8], where the
same problem with the transformation of the program was lifted, we need to introduce
a novel definition, which does not distinguish between the kinds of atoms.

In the following we denote byS1 ∪̇ ¬.S2 the set(S1 \ S2) ∪ ¬.S2, whereS1 and
S2 are sets of standard ground literals.

Definition 1 (Unfounded Set).A setX of ground atoms is an unfounded set for a
programP w.r.t. an interpretationI if, for each ruler in Ground(P) having some
atoms fromX in the head, at least one of the following conditions holds:

1. some literal ofB(r) is false w.r.t.I,
2. some literal ofB(r) is false w.r.t.I ∪̇ ¬.X, or
3. some atom ofH(r) \ X is true w.r.t.I.

Intuitively, conditions 1 and 3 state that rule satisfaction does not depend on the
atoms inX, while condition 2 ensures that the rule is satisfied also if the atoms inX are
switched to false. Note that∅ is always an unfounded set, independent of interpretation
and program.

Example 6.Let interpretationI0 = ∅ andP = {a(0) ∨ a(1) :− #avg{X : a(X)} = 1.,
a(2) ∨ a(1) :− #avg{X : a(X)} = 1.}. The unfounded sets w.r.t.I0 are∅, {a(0), a(1)},
{a(1), a(2)}, and{a(0), a(1), a(2)}. Only condition 2 applies in these cases. ForI1 =
{a(0)}, {a(1), a(2)}, and{a(0), a(1), a(2)} are unfounded sets. ForI2 = {a(1)},
{a(0)}, {a(2)}, {a(0), a(2)}, and {a(0), a(1), a(2)} are unfounded sets. ForI3 =
{not a(0), not a(1)}, {a(0), a(1), a(2)} and all of its subsets are unfounded sets.

In the sequel, we will demonstrate the robustness of Def. 1, and show that some cru-
cial properties of unfounded sets of nondisjunctive, aggregate-free programs continue
to hold, while a few others do not, basically mirroring unfounded sets for disjunctive,
aggregate-free programs. We first show that Def. 1 is a generalization of a previous
definition of unfounded sets for aggregate-free programs:

Theorem 1. For an aggregate-free programP and interpretationI, any unfounded set
w.r.t. Def. 1 is an unfounded set as defined in [11].

Proof. Recall that a setX of ground atoms is unfounded w.r.t. Def. 3.1 of [11], if
at least one of the following conditions holds for each rule rin Ground(P) having
some atoms from X in the head: (a)B(r) ∩ ¬.I 6= ∅, or (b) B+(r) ∩ X 6= ∅, or (c)
(H(r) \ X) ∩ I 6= ∅. On the other hand, in the aggregate-free case, Def. 1 amounts to:
(1) B(r) ∩ ¬.I 6= ∅, or (2)B(r) ∩ ¬.(I ∪̇ ¬.X) 6= ∅, or (3)(H(r) \ X) ∩ I 6= ∅.

Obviously, (a) is equivalent to (1), and (c) is equivalent to(2). Now observe that
B+(r) ∩ X 6= ∅ impliesB(r) ∩ X 6= ∅, which impliesB(r) ∩ (¬.(I \ X) ∪ X) 6= ∅
which is equivalent toB(r)∩¬.((I \X)∪¬.X) 6= ∅ ⇔ B(r)∩¬.(I ∪̇ ¬.X) 6= ∅, so

(b) implies (2). On the other hand, (2) is equivalent toB(r) ∩ ((¬.I \ ¬.X) ∪ X) 6= ∅,
and therefore (A)B(r) ∩ (¬.I \ ¬.X) 6= ∅ or (B) B(r) ∩ X 6= ∅ holds. (A) clearly
implies (a), and (B) implies (b) becauseX contains only atoms, henceB−(r)∩X = ∅.
In total, (2) implies (a) or (b). 2

By Proposition 3.3 in [11], unfounded sets of [11] generalize the “original” un-
founded sets of [18], which were defined for nondisjunctive programs. Therefore it
follows from Theorem 1 that also unfounded sets of Def. 1 generalize those of [18] on
nondisjunctive programs without aggregates.

Corollary 1. For a nondisjunctive, aggregate-free programP and interpretationI, any
unfounded set w.r.t. Def. 1 is a standard unfounded set (as defined in [18]).

Recently, unfounded sets have been defined for nondisjunctive programs with mono-
tone and antimonotone aggregates in [10]. Def. 1 also generalizes this notion.

Theorem 2. For a nondisjunctive programP with only monotone and antimonotone
aggregates and interpretationI, any unfounded set w.r.t. Def. 1 is an unfounded set
w.r.t. [10].

Proof. A setX of ground atoms is unfounded w.r.t. [10], if at least one of the following
conditions holds for each rule r inGround(P) having some atoms from X in the head:
(a) some antimonotone body literal ofr is false w.r.t.I, and (b) some monotone body
literal of r is false w.r.t.I ∪̇ ¬.X.

We first observe that condition 3 is always false for nondisjunctive programs, as
H(r) \ X = ∅, sinceH(r) ∩ X 6= ∅ and|H(r)| ≤ 1.

Now, observe thatI ∪̇ ¬.X ≤ I holds. So, if a monotone body literal ofr is false
w.r.t. I, it is also false w.r.t.I ∪̇ ¬.X, and if an antimonotone body literal ofr is false
w.r.t. I ∪̇ ¬.X, it must be false w.r.t.I. Therefore, if condition 1 holds for a monotone
literal, also condition 2 and (b) hold for this literal; conversely, if condition 2 holds for
an antimonotone literal, also condition 1 and (a) hold for it. So, since (a) and (b) trivially
imply condition 1 and 2, respectively, we obtain equivalence. 2

The union of two unfounded sets of nondisjunctive, aggregate-free programs is
guaranteed to be an unfounded set as well. For disjunctive programs, this does not hold;
also the addition of nonmonotone aggregates invalidates this property.

Observation 3 If X1 andX2 are unfounded sets for a programP w.r.t.I, thenX1∪X2

is not necessarily an unfounded set forP w.r.t. I, even ifP is nondisjunctive.

Example 7.ConsiderI = {a(0), a(1), a(−1)} andP = {a(1) :− #avg{X : a(X)} = 0.,

a(−1) :− #avg{X : a(X)} = 0., a(0).}. Both {a(1)} and{a(−1)} are unfounded sets
for P w.r.t. I, while {a(1), a(−1)} is not unfounded.

In this example, some elements in unfounded sets occur also in the interpretation.
This is not a coincidence, as shown by the following proposition.

Proposition 1. If X1 and X2 are unfounded sets for a programP w.r.t. I and both
X1 ∩ I = ∅ andX2 ∩ I = ∅ hold, thenX1 ∪ X2 is an unfounded set forP w.r.t. I.

Proof. Consider a ruler whereH(r)∩X1 6= ∅ (symmetric arguments hold forX2). At
least one of the conditions of Def. 1 holds w.r.t.X1. We will show that the conditions
also hold w.r.t.X1 ∪ X2.

If condition 1 holds w.r.t.X1, then it trivially holds also forX1 ∪X2. If condition 2
holds, a body literal is false w.r.t.I ∪̇ ¬.X1, so it is false w.r.t.I∪¬.X1 (sinceI∩X1 =
∅). Because of Remark 1, it is then also false w.r.t.I∪¬.X1∪¬.X2 = I ∪̇ ¬.(X1 ∪ X2).
If condition 3 holds, some atoma of H(r) \X1 is true w.r.t.I, soa ∈ I. It follows that
a 6∈ X2, and soa ∈ H(r) \ (X1 ∪ X2) is still true w.r.t.I. 2

We next define interpretations which never contain any element of their unfounded sets.

Definition 2 (Unfounded-free Interpretation). Let I be an interpretation for a pro-
gramP. I is unfounded-free ifI ∩ X = ∅ for each unfounded setX for P w.r.t. I.

For unfounded-free interpretations, Prop. 1 holds for all unfounded sets.

Corollary 2. If X1 andX2 are unfounded sets for a programP w.r.t. an unfounded-free
interpretationI, then alsoX1 ∪ X2 is an unfounded set forP w.r.t. I.

We can therefore define theGreatest Unfounded Set(GUS) for unfounded-free in-
terpretations as the union of all unfounded sets. Note that for non-unfounded-free inter-
pretations, there is in general no unique GUS, as demonstrated in Ex. 7.

Definition 3. Given a programP and an unfounded-free interpretationI, letGUSP(I)
(the GUS forP w.r.t. I) denote the union of all unfounded sets forP w.r.t. I.

These features are shared with disjunctive logic programs without aggregates, as
discussed in [11]. However, while aggregate- and disjunction-free programs possess
a unique GUS for arbitrary interpretations, Ex. 7 shows thatthis does not hold for
disjunction-free programs with aggregates. By virtue of Thm. 2 and Thm. 10 of [10],
which states that a unique GUS exists for nondisjunctive programs with monotone and
antimonotone aggregates, we can infer that the presence of nonmonotone aggregates
or disjunction and a non-unfounded-free interpretation isnecessary to invalidate the
existence of a unique GUS.

4 Unfounded Sets And Answer Sets

We will now use the notion of unfounded sets to characterize models and answer sets.
We begin with models and show that the negative part of a modelis an unfounded set
and vice versa.

Theorem 4. Given a total interpretationI and programP, I− is an unfounded set for
P w.r.t. I iff I is a model ofP.

Proof. (⇒) : For any rule, either (i)H(r) ∩ I− = ∅, or (ii) H(r) ∩ I− 6= ∅. If (i),
thenH(r) ∩ I 6= ∅, i.e. the head is true andr is satisfied w.r.t.I. If (ii) then one of the
conditions of Def. 1 must hold. If condition 1 holds, the bodyis false w.r.t.I andr is
satisfied w.r.t.I. If condition 2 holds, a body literal is false w.r.t.I ∪̇ ¬.I− = I, so it

coincides with condition 1. If condition 3 holds,H(r)∩ I 6= ∅, and therefore the rule is
satisfied w.r.t.I. In total, if I− is an unfounded set forP w.r.t. I, all rules are satisfied
w.r.t. I, henceI is a model ofP.

(⇐) : If I is a model, all rules are satisfied, so for any ruler, either (i)H(r)∩I 6= ∅
or (ii) if H(r) ∩ I = ∅ then a body literall is false w.r.t.I. So also for any ruler with
H(r) ∩ I− 6= ∅, either (i) or (ii) holds. If (i), then condition 3 of Def. 1 applies. If (ii),
then condition 1 (and also condition 2, sinceI ∪̇ ¬.I− = I) applies. ThereforeI− is
an unfounded set. 2

We now turn to answer sets. Each answer set is a model, so its negative part is an
unfounded set. We can show that it is the greatest unfounded set. Conversely, if the
negative part of a total interpretation is its greatest unfounded set, it is an answer set.

Theorem 5. A total interpretationI is an answer set ofP iff I− = GUSP(I)4.

Proof. (⇒) : If I is an answer set, it is also a model ofP, so by Thm. 4,I− is an
unfounded set forP w.r.t. I. We next show thatI is unfounded-free w.r.t.P, from
which I− = GUSP(I) follows. Let us assume an unfounded setX for P w.r.t. I exists
such thatI ∩ X 6= ∅. We can show that thenI ∪̇ ¬.X is a model ofPI , contradicting
the fact thatI is an answer set ofP.

First note that for any ruler in PI , all body literals are true w.r.t.I (by construction
of P I), andH(r) ∩ I 6= ∅ (sinceI is a model ofPI). We differentiate two cases: (i)
H(r) ∩ (I ∪̇ ¬.X) 6= ∅ and (ii) H(r) ∩ (I ∪̇ ¬.X) = ∅. For (i), r is trivially satisfied
by I ∪̇ ¬.X. For (ii), since we knowH(r) ∩ I 6= ∅, H(r) ∩ X 6= ∅ must hold. Since
X is an unfounded set w.r.tP andI (andr ∈ P), a body literal ofr must be false
w.r.t. I ∪̇ ¬.X (note that neither a body literal ofr is false w.r.t.I sincer ∈ PI , nor
(H(r) \ X) ∩ I 6= ∅ holds, otherwiseH(r) ∩ (I ∪̇ ¬.X) 6= ∅). Sor is satisfied also in
case (ii).I ∪̇ ¬.X is therefore a model ofPI , and since(I ∪̇ ¬.X)+ ⊂ I+, I is not a
minimal model ofPI , contradicting thatI is an answer set ofP.

(⇐) : By Thm. 4 if I− is an unfounded set forP w.r.t. I, I is a model ofP, so it is
also a model ofPI . We show by contradiction that it is in fact a minimal model ofPI .

Assume that a total interpretationJ , whereJ+ ⊂ I+, is a model ofPI . Since both
J andI are total,J− ⊃ I−. Again by Thm. 4,J− is an unfounded set forPI w.r.t. J .
We can then show thatJ− is also an unfounded set forP w.r.t. I, contradicting the fact
thatI− is GUSP(I). For any rule inP \PI , a body literal is false w.r.t.I, so condition
1 of Def. 1 holds. For a ruler ∈ PI such thatH(r) ∩ J− 6= ∅, (a) a body literal ofr is
false w.r.t.J (note thatJ ∪̇ ¬.J− = J) or (b) an atoma in H(r) \ J− is true w.r.t.J .
Concerning (a), observe thatI ∪̇ ¬.J− = J so (a) holds iff a body atom is false w.r.t.
I ∪̇ ¬.J−. Concerning (b), sinceJ+ ⊂ I+, atoma is also true w.r.t.I. In total, we have
shown thatJ− is an unfounded set forP w.r.t. I, a contradiction toI− = GUSP(I).
SoI is indeed a minimal model ofPI , and hence an answer set ofP. 2

Since the existence of the GUS implies that the interpretation is unfounded-free, we
obtain also:

Corollary 3. A modelI of a programP is unfounded-free iffI is an answer set ofP.

4 Note that by Def. 3, the existence ofGUSP(I) implies thatI is unfounded-free.

5 Computational Complexity

We will now study the complexity involved with unfounded sets. In particular, we are
interested in the question whether a total interpretation is unfounded-free, as by Cor. 3
this notion can be fruitfully used for computing answer sets. Throughout this section,
we assume that the truth value of aggregates can be established in polynomial time,
which is feasible for all aggregates currently available inASP systems. If, however,
aggregate truth valuation has a higher complexity, the total complexity will increase
accordingly.

We first show membership for the full language, and then hardness for a restricted
fragment, implying completeness for both languages and anything in between.

Theorem 6. Given a ground disjunctive logic programP, and a total interpretationI,
deciding whetherI is unfounded-free w.r.t.P is in co-NP.

Proof. The complementary problem (deciding whetherI is not unfounded-free) is in
NP: GuessX ⊆ BP and check that 1.X is an unfounded set forP w.r.t. I, and 2. that
X ∩ I 6= ∅. Both 1. and 2. are feasible in polynomial time, assuming that determining
the truth value of an aggregate literal can be done in polynomial time. 2

Next we show that deciding unfounded-freeness is a hard problem even for a simple
class of programs, provided that nonmonotone aggregates may be present.

Theorem 7. Given a ground nondisjunctive, negation-free logic program P with ar-
bitrary aggregates, and a total interpretationI, deciding whetherI is unfounded-free
w.r.t.P is co-NP-hard.

Proof. We give a reduction from the problem of unsatisfiability of a propositional 3CNF
φ = (c1

1 ∨ c1
2 ∨ c1

3) ∧ . . . ∧ (cm
1 ∨ cm

2 ∨ cm
3) where eachci

j is a literal over one ofn
variablesV = {x1, . . . , xn}. We construct a programP(φ):

x1(1) :− #avg{X : x1(X)} = 0. x1(1) :− w. x1(0). . . . xn(0).
x1(−1) :− #avg{X : x1(X)} = 0. x1(−1) :− w. w :− ρ(c1

1), ρ(c1
2), ρ(c1

3).
...

...
...

xn(1) :− #avg{X : xn(X)} = 0. xn(1) :− w. w :− ρ(cm

1), ρ(cm

2), ρ(cm

3).
xn(−1) :− #avg{X : xn(X)} = 0. xn(−1) :− w.

whereρ(xi) = xi(1) andρ(¬xi) = xi(−1). Thenφ is unsatisfiable iff the interpreta-
tion I(φ) = {w, x1(1), x1(0), x1(−1), . . . , xn(1), xn(0), xn(−1)} is unfounded-free.

Indeed, ifσ is a satisfying truth assignment forV , thenXσ = {w} ∪ {xi(1) |
xi true inσ} ∪ {xi(−1) | xi false inσ} is unfounded forP(φ) w.r.t. I(φ). It is easily
checked that for each rule inP(φ) with a head inXσ at least one body literal is false
w.r.t. I(φ) ∪̇ ¬.Xσ.

On the other hand, letX be a non-empty unfounded set forP(φ) w.r.t.I(φ). Clearly,
xi(0) 6∈ X. If xi(1) ∈ X, thenxi(−1) 6∈ X and vice versa, because if bothxi(1) ∈
X andxi(−1) ∈ X, #avg{X : xi(X)} = 0 is true w.r.t.I(φ) and I(φ) ∪̇ ¬.X.
Furthermore, if somexi(1) ∈ X or xi(−1) ∈ X, then alsow ∈ X. If w ∈ X, then for
each clause inφ some correspondingxj(1) orxj(−1) must be inX. It is easy to see that

this corresponds to a (possibly) partial truth assignment satisfyingφ, which can always
be extended to a total truth assignment satisfyingφ. So any non-empty unfounded set
X (henceX ∩ I(φ) 6= ∅) implies the existence of a satisfying truth assignment forφ. 2

These results allow us to give a complete picture of the complexity of model check-
ing, reported on the left of Table 1. There, the rows indicatethe kinds of aggregates
(m – monotone,a – antimonotone,n – nonmonotone) allowed in programs, while the
columns vary over the presence of negation and disjunction.All co-NP entries are com-
pleteness results. The results in the first row are well-known results of the literature
(cf. [19]), theP entries for{m,a} follow from recent results in [10], while the other
results are consequences of Thms. 5, 6, 7, Cor. 3, with results from the literature.

It becomes clear from this table that a complexity increase occurs with the presence
of either disjunction or nonmonotone aggregates, and, importantly, that these two fac-
tors together do not cause a further increase. Also in Table 1, on the right hand side,
we have summarized results from the literature (see [19, 8, 10]) for the problem of cau-
tious reasoning. We observe that the complexity increase occurs at the same places, and
indeed one can blame the necessity of co-NP checks for theΠP

2 results.
Concerning computation, we conjecture that, given the symmetries in properties

and complexity, techniques analogous to those described in[11] can be used in order to
effectively and efficiently compute answer sets of programswith arbitrary aggregates.

We will briefly discuss an important issue concerning computation, though. It is
striking that from Table 1 it appears that a single, apparently “innocent”, aggregate like
#count{< 1 : a >, < 2 : b >} = 1 will increase the reasoning complexity. Obviously,
this is not the case, as this aggregate can be rewritten to an equivalent conjunction
#count{< 1 : a >, < 2 : b >} ≤ 1, #count{< 1 : a >, < 2 : b >} ≥ 1, thus eliminating
the nonmonotone aggregate. In fact, such a decomposition ispossible for each non-
monotone aggregate, if one allows the use of custom aggregates (rather than a set of
fixed aggregates) and the introduction of new symbols. However, this operation is only
polynomial (and hence effective) if the number of the truth value changes of the non-
monotone aggregate in the lattice of total interpretationsinduced by< is polynomi-
ally bounded. Note that all currently implemented nonmonotone aggregates of DLV
(#avgis not) and Smodels are polynomially decomposable.

6 Related Work

To our knowledge, the only other works in which the notion of unfounded set has been
defined and studied for programs with aggregates are [1, 10].However, both works
consider only nondisjunctive programs, and the latter restricts itself to monotone and
antimonotone aggregates. As discussed in [10], the definition of [1] seems to ignore
aggregates at crucial points of the definition, and appears to be incomparable with the
one in [10], and therefore also with Def. 1. Unfounded sets for disjunctive (aggregate-
free) programs had been defined and studied in [11]. In fact, several of our results
parallel those of [11]. We believe that for this reason the computational techniques
reported therein can be adapted to the aggregate setting.

Since unfounded sets have originally been used for defining the well-founded se-
mantics, one could do this also with our unfounded sets. Thiswas done (to some ex-

Checking ∅ {not } {∨} {not ,∨}
∅ P P co-NP co-NP

{m, a} P P co-NP co-NP
{m, a, n} co-NP co-NP co-NP co-NP

Cautious ∅ {not } {∨} {not ,∨}

∅ P co-NP ΠP

2 ΠP

2

{m, a} co-NP co-NP ΠP

2 ΠP

2

{m, a, n} ΠP

2 ΠP

2 ΠP

2 ΠP

2

Table 1.Complexity of Answer Set Checking (left) and Cautious Reasoning (right)

tent) in [11], but the recent work in [20] argues that for disjunctive programs a somewhat
refined version of unfounded sets based on so-called model sets rather than interpreta-
tions. Recently, a unifying framework for unfounded sets and loop formulas has been
defined in in [15]. Also this work does not consider aggregates, but we believe that the
results with aggregates should be generalizable in a similar way.

Concerning semantics for programs with aggregates, especially the last few years
have seen many proposals. We refer to [8] (the definition on which our work is based)
and [21] for overviews and comparisons.

7 Conclusion and Future Work

The semantics of logic programs with aggregates is not straightforward, especially in
presence of recursive aggregates. The characterizations of answer sets, provided in
Sec. 4, allow for a better understanding of the meaning of programs with aggregates.
Our results give confidence in the appropriateness of answersets as defined in [8].

Furthermore, our results provide a handle on effective methods for computing an-
swer sets for disjunctive programs with (possibly recursive and nonmonotone) aggre-
gates. An approach with a separation of model generation andmodel checking (which
is co-NP in the worst case) is indicated by the complexity results of Sec. 5. By defining
suitable operators analogously to [11], one can obtain powerful means for pruning in the
generation phase, along with an effective instrument for model checking, as described
in [13, 14]. Our results should also be adaptable to be used for SAT-based ASP systems,
all of which rely on loop formulas, along the lines describedin [15].

Our complexity results provide a clear picture of the various program fragments
from the computational viewpoint. This is very useful for picking the appropriate tech-
niques to be employed for the computation. In particular, itbecame clear that in the
presence of only monotone and antimonotone aggregates and absence of disjunctions,
anNP computing scheme can be chosen. That is, there the focus should be on answer
set generation, while answer set checking is a simpler task.As soon as nonmonotone
aggregates or disjunctions are present, a two-level schemahas to be employed, which
must focus on both answer set generation and checking, as both tasks are hard. Impor-
tantly, the presence of both nonmonotone aggregates and disjunction does not further
raise the complexity. It should be noted that, as pointed outat the end of Sec. 5, many
nonmonotone aggregates can be decomposed into monotone andantimonotone ones,
including Smodels cardinality and weight constraints withpositive weights.

A main concern for future work is therefore the exploitationof our results for the
implementation of recursive aggregates in ASP systems, along with a study on how to
generalize the notion for defining the well-founded semantics for the full language.

References

1. Kemp, D.B., Stuckey, P.J.: Semantics of Logic Programs with Aggregates. In: ISLP’91, MIT
Press (1991) 387–401

2. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded and Stable Model Seman-
tics for Logic Programs with Aggregates. In Codognet, P., ed.: ICLP-2001, (2001) 212–226

3. Gelfond, M.: Representing Knowledge in A-Prolog. In: Computational Logic. Logic Pro-
gramming and Beyond. LNCS 2408 (2002) 413–451

4. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence138(2002) 181–234

5. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions in DLV. In:
ASP’03, Messina, Italy (2003) 274–288 Online athttp://CEUR-WS.org/Vol-78/.

6. Pelov, N., Truszczýnski, M.: Semantics of disjunctive programs with monotone aggregates -
an operator-based approach. In: NMR 2004. (2004) 327–334

7. Pelov, N., Denecker, M., Bruynooghe, M.: Partial stable models for logic programs with
aggregates. In: LPNMR-7. LNCS 2923

8. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-
mantics and complexity. In: JELIA 2004. LNCS 3229

9. Ferraris, P.: Answer Sets for Propositional Theories.http://www.cs.utexas.edu/
users/otto/papers/proptheories.ps (2004)

10. Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative and Computational Properties of
Logic Programs with Aggregates. In: Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI-05). (2005) 406–411

11. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Information and Computation135(1997) 69–112

12. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Operators for Answer Set Program-
ming Systems. In: NMR’2002. (2002) 200–209

13. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. Artificial Intelligence15 (2003) 177–212

14. Pfeifer, G.: Improving the Model Generation/Checking Interplay toEnhance the Evaluation
of Disjunctive Programs. In: LPNMR-7. LNCS, (2004) 220–233

15. Lee, J.: A Model-Theoretic Counterpart of Loop Formulas.http://www.cs.utexas.
edu/users/appsmurf/papers/mtclf.pdf (2004)

16. Baral, C.: Knowledge Representation, Reasoning and DeclarativeProblem Solving. CUP
(2002)

17. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9 (1991) 365–385

18. Van Gelder, A., Ross, K., Schlipf, J.: The Well-Founded Semantics for General Logic Pro-
grams. JACM38 (1991) 620–650

19. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys33 (2001) 374–425

20. Wang, K., Zhou, L.: Comparisons and Computation of Well-founded Semantics for Disjunc-
tive Logic Programs. ACM TOCL6 (2005)

21. Pelov, N.: Semantics of Logic Programs with Aggregates. PhD thesis, Katholieke Univer-
siteit Leuven, Leuven, Belgium (2004)

