Unfounded Sets for Disjunctive Logic Programs with
Arbitrary Aggregates™

Wolfgang Faber

Department of Mathematics, University of Calabria, 87030 Rende, (€8)
faber@mat.unical .it

Abstract. Aggregates in answer set programming (ASP) have recently been stud
ied quite intensively. The main focus of previous work has been onidgfauit-
able semantics for programs with arbitrary, potentially recursive agtgs. By
now, these efforts appear to have converged. On another line afrcbsé¢he re-
lation between unfounded sets and (aggregate-free) answer sdtddhabeen
rediscovered. It turned out that most of the currently available ansstesolvers
rely on this or closely related results (e.g., loop formulas).

In this paper, we unite these lines and give a new definition of unfoureteds
disjunctive logic programs with arbitrary, possibly recursive aggesganhile
being syntactically somewhat different, we can show that this definitiopeplp
generalizes all main notions of unfounded sets that have previoustydefiaed
for fragments of the language.

We demonstrate that, as for restricted languages, answer sets céspheotrar-
acterized by unfounded sets: They are precisely the unfoundeaniveels. This
result can be seen as a confirmation of the robustness of the definitem- of
swer sets for arbitrary aggregates. We also provide a comprebearwiwlexity
analysis for unfounded sets, and study its impact on answer set tatopu

1 Introduction

The introduction of aggregate atoms [1-8] is one of the miajguistic extensions to
Answer Set Programming of the recent years. While both sémantl computational
properties of standard (aggregate-free) logic programe baen deeply investigated,
relatively few works have focused on logic programs withraggtes; some of their
semantic properties and their computational featurestiréas from being fully clari-
fied.

The proposal for answer set semantics in [8] seems to beviegei consensus. Re-
cent works, such as [9, 10] give further support for the phlity of this semantics by
relating it to established constructs for aggregate-fregnams. In particular, [9] pre-
sented a semantics for very general programs, and showei tioéncides with both
answer sets of [8] and Smodels answer sets (the latter hmidgeight constraints with
positive weights only). In [10] the notion of unfounded dstextended from aggregate-
free programs to programs with aggregates in a conservatiyeretaining important

* This work was supported by an APART grant of the Austrian Academ$axénces and the
European Commission under projects IST-2002-33570 INFOMIX;2801-37004 WASP.

semantical and computational properties. It should bednthigt unfounded sets are the
basis of virtually all currently available ASP solvers [#112-15]. Extending this no-
tion to programs with aggregates should therefore be segavasg the way to effective
and efficient systems for programs with aggregates.

However, in [10] only a fragment of the language has beenidered, namely
nondisjunctive programs with monotone and antimonotorgreggates. In this paper
we lift this restriction and define unfounded setsd@junctiveprograms witharbitrary
aggregates. To this end, some substantial change in théidefia necessary to account
for nonmonotone aggregates. Nevertheless, we are abl@vte firat our definition is
a clean extension of all main previous notions of unfoundetd: On the respective
fragments, our unfounded sets always coincide with theipusly proposed ones.

Importantly, we can show that our notion of unfounded seitspbyr characterizes
both models and answer sets of [8] for arbitrary programsalse study complexity
issues for unfounded sets and put them into perspective nefihect to complexity
of reasoning tasks on answer sets for various fragmentsogf@ms with aggregates.
Finally, we discuss the impact of our results on computation

Summarizing, our contributions are as follows:

— We define the notion of unfounded sets isjunctivelogic programs witharbi-
trary aggregates. We demonstrate that this notion is a soundaja¢ion of all
main previous concepts of unfounded sets.

— We analyze the properties of our unfounded sets, which lpathbse of previous
definitions. We show that a unique greatest unfounded setalexists for the class
of unfounded-free interpretations.

— We characterize answer sets in terms of unfounded sets. i@he eesults is that a
model is an answer sets iff it is unfounded-free.

— We study the complexity of determining unfounded-freerafsan interpretation,
and deduce the complexity for answer set checking, whiatstaut to be a crucial
factor for the complexity of query answering.

— We indicate applications of our results; in particularyth#iow to conceive how to
build efficient systems for computing answer sets for progravith aggregates.

2 Logic Programs with Aggregates

2.1 Syntax

We assume that the reader is familiar with standard LP; we¥ tefthe respective con-
structs asstandard atoms, standard literals, standard rylesdstandard programs
Two literals are said to be complementary if they are of thienfp andnot p for some
atomp. Given a literalL, —.L denotes its complementary literal. Accordingly, given a
setA of literals,—. A denotes the s€t-~.L | L € A}. For further background, see [16,
17].

Set Terms. A DLP“set termis either a symbolic set or a ground setspmbolic set
is a pair{ Vars: Conj}, where Vars is a list of variables and’'on; is a conjunction of

standard atom5A ground sets a set of pairs of the forn(t: Conj), wheret is a list of
constants and’onj is a ground (variable free) conjunction of standard atoms.

Aggregate Functions. An aggregate functioris of the form f(.S), whereS is a set
term, andf is anaggregate function symhdhtuitively, an aggregate function can be
thought of as a (possibly partial) function mapping mutsse constants to a constant.

Example 1. In the examples, we adopt the syntdXLof to denote aggregatedggre-
gate functions currently supported by the DLV system #esunt (number of terms),
#sum (sum of non-negative integers)times (product of positive integers)#min
(minimum term) #max (maximum termy.

Aggregate Literals. An aggregate atonis f(S) < T, where f(.S) is an aggregate
function, <€ {=, <, <,>,>} is a predefined comparison operator, &nés a term
(variable or constant) referred to as guard.

Example 2.The following aggregate atoms are in DLV notation, whereldtier con-
tains a ground set and could be a ground instance of the former
#max{Z : r(Z),a(Z,V)} >Y #max{(2:7(2),a(2,k)),(2:7(2),a(2,c))} > 1

An atomis either a standard atom or an aggregate atofiitefal L is an atomA or an
atom A preceded by the default negation symhet; if A is an aggregate atond, is
anaggregate literal

DLP4 Programs. A DLP rule r is a construct

a1 V .-+ V an i— bi,...,bg, not bigy1,..., not bn,.
whereay, - - -, a,, are standard atoms,, - - -, b,, are atoms, and > 1, m > k > 0.
The disjunctiorn; VvV --- V a, is referred to as theeadof » while the conjunction

bi,..., bk, not bgy1,...,n0t by, is thebodyof r. We denote the set of head atoms
by H(r), and the sefb, ..., by, not byy1,...,n0t b, } of the body literals byB(r).
B*(r) andB~ (r) denote, respectively, the set of positive and negativealigen B(r).
Note that this syntax does not explicitly allow integritynstraints (rules without head
atoms). They can, however, be simulated in the usual way iog @snew symbol and
negation.

A DLP“ programis a set of DLP* rules. In the sequel, we will often drop D¥P
when it is clear from the context. §lobal variable of a ruler appears in a standard
atom ofr (possibly also in other atoms); all other variableslacal variables.

Safety. A rule r is safeif the following conditions hold: (i) each global variablé o
r appears in a positive standard literal in the body-ofii) each local variable of
appearing in a symbolic sétVars : Conj} appears in an atom af'onj; (iii) each
guard of an aggregate atomsofs a constant or a global variable. A progréris safe
if all » € P are safe. In the following we assume that DL programs are safe.

Y Intuitively, a symbolic set{ X : a(X,Y),p(Y)} stands for the set o -values making
a(X,Y),p(Y) true,i.e. {X |3V s.t. a(X,Y),p(Y) is true}.

2 The first two aggregates roughly correspond, respectively, to taknedity and weight con-
straint literals of Smodels#min and#max are undefined for empty set.

2.2 Answer Set Semantics

Universe and Base. Given a DLP* programP, let Up denote the set of constants
appearing inP, and Bp be the set of standard atoms constructible from the (stan-

dard) predicates dP with constants irU/». Given a setX, let 2~ denote the set of all
multisets over elements frodki. Without loss of generality, we assume that aggregate
functions map td (the set of integers).

_ _ _NT
Example 3.#count is defined overzU? #sum overQN, #times overQN, #min and
#max are defined oveZ — {}.

Instantiation. A substitutionis a mapping from a set of variables &&. A substi-
tution from the set of global variables of a rulgto Up) is aglobal substitution for
r; a substitution from the set of local variables of a symbe#&tS (to Up) is alocal
substitution forS. Given a symbolic set without global variabl@s= {Vars : Conj},
theinstantiation ofS is the following ground set of pairgst(S):

{{y(Vars) : y(Conj)) | v is a local substitution fos}.3

A ground instancedf a ruler is obtained in two steps: (1) a global substitutiorfior

r is first applied over; (2) every symbolic sef in o(r) is replaced by its instantia-
tion inst(S). The instantiatiorGround(P) of a programpP is the set of all possible
instances of the rules @1.

Interpretations. An interpretationfor a DLPA programP is a consistent set of stan-
dard ground literals, that i C (BpU-.Bp) such thaf N—.I = . A standard ground
literal L is true (resp. false) w.rkif L € I (resp.L € —.I). If a standard ground literal
is neither true nor false w.rit then it is undefined w.r.f. We denote by (resp./ ™)
the set of all atoms occurring in standard positive (respatiee) literals inl. We de-
note byl the set of undefined atoms w.dt(i.e. Bp \ IT U I7). An interpretation is
total if I is empty (i.e./t U—-.I- = Bp), otherwisel is partial.

An interpretation also provides a meaning for aggregatedis. Their truth value is
first defined for total interpretations, and then generdlioepartial ones.

Let I be a total interpretation. A standard ground conjunctiotus (resp. false)
w.r.t I if all its literals are true (resp. false). The meaning ofta@e aggregate function,
and an aggregate atom under an interpretation, is a mutisetiue, and a truth-value,
respectively. Letf(S) be a an aggregate function. The valuatid$) of S w.r.t. I is
the multiset of the first constant of the elements$iwhose conjunction is true w.r.L.
More precisely, lef (S) denote the multisdt; | (t1,...,t,: Cong) € SA Conj is true
w.r.t. 1]. The valuation/ (f(.S)) of an aggregate functiof(S) w.r.t. I is the result of the
application off on I(S). If the multiset/(S) is not in the domain of, I(f(S)) = L
(where_L is a fixed symbol not occurring iR).

An instantiated aggregate atorh of the form f(S) < k is true w.rt. I if: (i)
I(f(S)) # L, and, (i) I(f(S)) < k holds; otherwiseA is false. An instantiated
aggregate literahot A = not f(5) < kistrue w.rt. I if (i) I(f(S)) # L, and, (ii)
I(f(S)) < k does not hold; otherwise is false.

3 Given a substitutionr and a DLP* objectObj (rule, set, etc.), we denote by(Obj) the
object obtained by replacing each variadlen Ob; by o(X).

If I is apartial interpretation, an aggregate literalis true (resp. false) w.r.f. if it
is true (resp. false) w.r.each totalinterpretation/ extending!/ (i.e.,V J s.t.I C J,
Ais true (resp. false) w.r.tl); otherwise it is undefined.

Example 4.Consider the atomdl = #sum{(1:p(2,1)), (2:p(2,2))} > 1. Let S be the
ground setim. For the interpretatiofi = {p(2, 2) }, each extending total interpretation
contains eithep(2, 1) ornot p(2,1). Therefore, eithef (S) = [2] or I(S) = [1, 2] and
the application of#sum yields either2 > 1 or3 > 1, henceA is true w.r.t.I.

Remark 1. Our definitions of interpretation and truth valpesserve “knowledge mono-
tonicity”. If an interpretationJ extendd (i.e., I C J), then each literal which is true
w.rt. I is true w.r.t.J, and each literal which is false w.r.Lis false w.r.t.J as well.

Minimal Models. Given an interpretatior, a ruler is satisfied w.r.tI if some head
atom is true w.r.t/ whenever all body literals are true w.rit. A total interpretation
M is amodelof a DLP4 programP if all » € Ground(P) are satisfied w.r.th. A
model M for P is (subset) minimal if no modeV for P exists such thal ™ c M.
Note that, under these definitions, the wamterpretationrefers to a possibly partial
interpretation, while anodelis always a total interpretation.

Answer Sets. We now recall the generalization of the Gelfond-Lifschiamisforma-
tion and answer sets for DI“Pprograms from [8]: Given a ground DIPprogramP
and a total interpretation, let P! denote the transformed program obtained ffBray
deleting all rules in which a body literal is false w.ft.] is an answer set of a program
P if it is a minimal model ofGround(P)?.

Example 5.Consider interpretatiol, = {p(a)}, I = {not p(a)} and two programs
Py = {p(a) :— #count{X : p(X)} > 0.} and P> = {p(a) :— #count{X : p(X)} < 1.}.

Ground(P1) = {p(a) :— #count{{a : p(a))} > 0.} andGround(P1)"* = Ground(P,),
Ground(P1)™ = (. Furthermore@Ground(P:) = {p(a) :— #count{(a : p(a))} < 1.}, and
Ground(P:)" = 0, Ground(P:)™ = Ground(P2) hold.

I is the only answer set d?; (sincel; is not a minimal model of:round(P;)!t),
while P, admits no answer sef;(is not a minimal model o&round(P;)’, andl, is
not a model olGround(P,) = Ground(P,)'?).

Note that any answer set of P is also a model ofP because&round(P)* C
Ground(P), and rules inGround(P) — Ground(P)* are satisfied w.r.t4.

Monotonicity. Given two interpretationg andJ we say that’ < J if I C J*+ and
J~ C I~.Aground literall is monotoneif for all interpretationd , .J, such that < J,
we have that: (iy true w.r.t.I implies ¢ true w.r.t..J, and (ii) ¢ false w.r.t..J implies /¢
false w.r.t.I. A ground literal/ is antimonotonegif the opposite happens, that is, for all
interpretationd, J, such thatl < J, we have that: (iY true w.r.t.J implies/ true w.r.t.
1, and (i) ¢ false w.r.t.I implies/ false w.r.t.J. A ground literal/ is nonmonotongf it

is neither monotone nor antimonotone.

Note that positive standard literals are monotone, wharegative standard literals
are antimonotone. Aggregate literals may be monotonenpanttone or nonmonotone,
regardless whether they are positive or negative. Nonnooedtiterals include the sum
over (possibly negative) integers and the average.

3 Unfounded Sets

We now give a definition of unfounded set for arbitrary D Brograms. It should be
noted that it is not possible to just take over the previodsdiens in [18,11, 10], as
all of them make a distinction on the kind of atoms, be it pesiand negative atoms, or
the generalized version of monotone and antimonotone attussas in [8], where the
same problem with the transformation of the program wasdiftive need to introduce
a novel definition, which does not distinguish between timgl&iof atoms.

In the following we denote by1 U —.52 the set(S; \ Sa) U —.S,, whereS; and
S, are sets of standard ground literals.

Definition 1 (Unfounded Set).A set X of ground atoms is an unfounded set for a
program P w.r.t. an interpretation! if, for each ruler in Ground(P) having some
atoms fromX in the head, at least one of the following conditions holds:

1. some literal ofB(r) is false w.r.t.z,
2. some literal ofB(r) is false w.r.t./ U =.X, or
3. some atom off (r) \ X is true w.r.t.I.

Intuitively, conditions 1 and 3 state that rule satisfagtdnes not depend on the
atoms inX, while condition 2 ensures that the rule is satisfied aldodfdtoms inX are
switched to false. Note thétis always an unfounded set, independent of interpretation
and program.

Example 6.Let interpretation/, = # andP = {a(0) V a(1) :— #avg{X : a(X)} = 1.,
a(2) Va(l) - #avg{X : a(X)} = 1.}. The unfounded sets w.rk are@, {a(0),a(1)},
{a(1),a(2)}, and{a(0),a(1),a(2)}. Only condition 2 applies in these cases. For=
{a(0)}, {a(1),a(2)}, and{a(0),a(1),a(2)} are unfounded sets. Fdy = {a(1)},
{a(0)}, {a(2)}, {a(0),a(2)}, and {a(0),a(1),a(2)} are unfounded sets. Fds =
{not a(0),not a(1)}, {a(0),a(1),a(2)} and all of its subsets are unfounded sets.

In the sequel, we will demonstrate the robustness of Defid show that some cru-
cial properties of unfounded sets of nondisjunctive, aggte-free programs continue
to hold, while a few others do not, basically mirroring unfided sets for disjunctive,
aggregate-free programs. We first show that Def. 1 is a ghretian of a previous
definition of unfounded sets for aggregate-free programs:

Theorem 1. For an aggregate-free prograr and interpretation/, any unfounded set
w.r.t. Def. 1 is an unfounded set as defined in [11].

Proof. Recall that a sefX of ground atoms is unfounded w.r.t. Def. 3.1 of [11], if
at least one of the following conditions holds for each ruia Ground(P) having
some atoms from X in the head: (&(r) N —.1 # 0, or (b) BT (r) N X # 0, or (c)
(H(r)\ X) NI # 0. On the other hand, in the aggregate-free case, Def. 1 asitunt
L) B(ryn=I#0,0r(2Q)B(r)N—.(IU-.X)#0,0r) (H(r)\ X)NI#0.
Obviously, (a) is equivalent to (1), and (c) is equivalen{2p. Now observe that

Bt(r)nX # 0 impliesB(r) N X # 0, which impliesB(r) N (—.(I\ X) U X) # 0
which is equivalent tdB(r) N —.(I\ X)U—-.X) # 0 & B(r)Nn—-.(I U—.X) # 0, so

(b) implies (2). On the other hand, (2) is equivalenfz@) N ((—.1 \ —.X) U X) # 0,
and therefore (A)B(r) N (=.1 \ =.X) # 0 or (B) B(r) N X # 0 holds. (A) clearly
implies (a), and (B) implies (b) becaudecontains only atoms, hendg™ (r)N X = .
In total, (2) implies (a) or (b).]

By Proposition 3.3 in [11], unfounded sets of [11] generalike “original” un-
founded sets of [18], which were defined for nondisjunctivegoams. Therefore it
follows from Theorem 1 that also unfounded sets of Def. 1 gaize those of [18] on
nondisjunctive programs without aggregates.

Corollary 1. Foranondisjunctive, aggregate-free progrdfrand interpretatiorn/, any
unfounded set w.r.t. Def. 1 is a standard unfounded set (Esadkin [18]).

Recently, unfounded sets have been defined for nondisyeqatbgrams with mono-
tone and antimonotone aggregates in [10]. Def. 1 also gkresdhis notion.

Theorem 2. For a nondisjunctive progran® with only monotone and antimonotone
aggregates and interpretatioh, any unfounded set w.r.t. Def. 1 is an unfounded set
w.r.t. [10].

Proof. A setX of ground atoms is unfounded w.r.t. [10], if at least one effibllowing
conditions holds for each rule r illround(P) having some atoms from X in the head:
(a) some antimonotone body literal ois false w.r.t.7, and (b) some monotone body
literal of r is false w.r.tJ U —.X.

We first observe that condition 3 is always false for nondisjive programs, as
H(r)\ X =0,sinceH(r)NX #@and|H(r)] <1.

Now, observe thaf U —.X < I holds. So, if a monotone body literal ofis false
w.r.t. I, it is also false w.r.t/ U —.X, and if an antimonotone body literal ofis false
w.r.t. I U —.X, it must be false w.r.tl. Therefore, if condition 1 holds for a monotone
literal, also condition 2 and (b) hold for this literal; camgely, if condition 2 holds for
an antimonotone literal, also condition 1 and (a) hold fd8d, since (a) and (b) trivially
imply condition 1 and 2, respectively, we obtain equivakenc |

The union of two unfounded sets of nondisjunctive, aggeefise programs is
guaranteed to be an unfounded set as well. For disjunctograms, this does not hold;
also the addition of nonmonotone aggregates invalidatepthperty.

Observation 3 If X; and X, are unfounded sets for a prografmw.r.t. I, thenX; UX,
is not necessarily an unfounded set fom.r.t. I, even ifP is nondisjunctive.

Example 7.Considerl = {a(0),a(1),a(—1)} andP = {a(1) :— #avg{X : a(X)} = 0.,
a(—=1) :— #avg{X : a(X)} = 0.,a(0).}. Both {a(1)} and{a(—1)} are unfounded sets
for P w.r.t. I, while {a(1), a(—1)} is not unfounded.

In this example, some elements in unfounded sets occur migeiinterpretation.
This is not a coincidence, as shown by the following propasit

Proposition 1. If X; and X, are unfounded sets for a progra® w.r.t. I and both
XiNnI=0andX, NI =0 hold, thenX; U X, is an unfounded set fd? w.r.t. I.

Proof. Consider a rule whereH (r) N X7 # () (symmetric arguments hold fd¢,). At
least one of the conditions of Def. 1 holds w.Af;. We will show that the conditions
also hold w.r.t.X; U X,.

If condition 1 holds w.r.tX, then it trivially holds also forX; U X,. If condition 2
holds, a body literal is false w.rf.U —. X, soitis false w.r.t/u—-.X; (sincelNX; =
(). Because of Remark 1, itis then also false Witt—. X1 U—. X5 = T U —.(X; U X5).

If condition 3 holds, some atomof H(r) \ X; is true w.r.t.7, soa € I. It follows that
a & Xs,andsaw € H(r) \ (X1 U X3) is still true w.r.t.1. |

We next define interpretations which never contain any ef¢witheir unfounded sets.

Definition 2 (Unfounded-free Interpretation). Let I be an interpretation for a pro-
gramP. I is unfounded-free if N X = @ for each unfounded séf for P w.r.t. I.

For unfounded-free interpretations, Prop. 1 holds for albunded sets.

Corollary 2. If X; and X, are unfounded sets for a prografw.r.t. an unfounded-free
interpretation/, then alsoX; U X5 is an unfounded set fgpP w.r.t. I.

We can therefore define tlgreatest Unfounded SEBUS) for unfounded-free in-
terpretations as the union of all unfounded sets. Note tdratdn-unfounded-free inter-
pretations, there is in general no unique GUS, as demoegtiaEx. 7.

Definition 3. Given a progran® and an unfounded-free interpretatidnlet GUSp (1)
(the GUS forP w.r.t. I) denote the union of all unfounded sets fow.r.t. I.

These features are shared with disjunctive logic prograitisowt aggregates, as
discussed in [11]. However, while aggregate- and disjonetiee programs possess
a unique GUS for arbitrary interpretations, Ex. 7 shows th& does not hold for
disjunction-free programs with aggregates. By virtue ofriTt2 and Thm. 10 of [10],
which states that a unique GUS exists for nondisjunctivgmms with monotone and
antimonotone aggregates, we can infer that the presencenofianotone aggregates
or disjunction and a non-unfounded-free interpretationdsessary to invalidate the
existence of a unique GUS.

4 Unfounded Sets And Answer Sets

We will now use the notion of unfounded sets to characterindets and answer sets.
We begin with models and show that the negative part of a medei unfounded set
and vice versa.

Theorem 4. Given a total interpretatiod and programP, I~ is an unfounded set for
P w.rt. [iff I is a model ofP.

Proof. (=) : For any rule, either (H(r) NI~ = 0, or (i) H(r) NI~ £ (. If (i),

thenH (r) NI # (), i.e. the head is true andis satisfied w.r.tI. If (ii) then one of the
conditions of Def. 1 must hold. If condition 1 holds, the baddyalse w.r.t.I andr is
satisfied w.r.t.. If condition 2 holds, a body literal is false w.rk.U —./~ = I, so it

coincides with condition 1. If condition 3 hold&[(r) N I # @, and therefore the rule is
satisfied w.r.tl. In total, if I~ is an unfounded set fdP w.r.t. I, all rules are satisfied
w.r.t. I, hencel is a model ofP.

(<) : If Iisamoadel, all rules are satisfied, so for any myleither (i) H (r) NI #
or (i) if H(r) NI = (then a body literal is false w.r.t.I. So also for any rule with
H(r)Nn I~ # 0, either (i) or (i) holds. If (i), then condition 3 of Def. 1 apes. If (ii),
then condition 1 (and also condition 2, sint&) —.I~ = I) applies. Thereford ™ is
an unfounded set. O

We now turn to answer sets. Each answer set is a model, sogiggiveepart is an
unfounded set. We can show that it is the greatest unfouneledCsnversely, if the
negative part of a total interpretation is its greatest untted set, it is an answer set.

Theorem 5. A total interpretation/ is an answer set of? iff I~ = GUSp(1)*.

Proof. (=) : If I is an answer set, it is also a modelBf so by Thm. 4,/ is an
unfounded set fof® w.r.t. I. We next show thaf is unfounded-free w.r.tP, from
which I~ = GUS»(I) follows. Let us assume an unfounded &efor P w.r.t. I exists
such that’ N X # (). We can show that thehU —.X is a model ofP!, contradicting
the fact that/ is an answer set @?.

First note that for any rule in P!, all body literals are true w.r.f. (by construction
of PT), andH(r) N I #) (sincel is a model ofP?). We differentiate two cases: (i)
H(r)yn(IU~-.X) # 0and (i)H(r) N (I U-.X) = 0. For (i), r is trivially satisfied
by I U —.X. For (i), since we knowH (r) N I # 0, H(r) N X # () must hold. Since
X is an unfounded set w.r® andI (andr € P), a body literal ofr must be false
w.r.t. I U —.X (note that neither a body literal ofis false w.r.t.I sincer € P’, nor
(H(r)\ X) NI # (holds, otherwised (r) N (I U —.X) # @). Sor is satisfied also in
case (ii).] U —.X is therefore a model gP!, and sincg7 U —~.X)* C I*, I isnota
minimal model of P!, contradicting thaf is an answer set dP.

(<) : By Thm. 4if I~ is an unfounded set f& w.r.t. I, I is a model ofP, so it is
also a model ofP’. We show by contradiction that it is in fact a minimal modelRf.

Assume that a total interpretatioh) whereJ+ c It, is a model ofP!. Since both
J and[are total,J— D I~. Again by Thm. 4,/ is an unfounded set fgP! w.r.t. J.
We can then show that™ is also an unfounded set f@rw.r.t. I, contradicting the fact
that7~ is GUSp(I). For any rule if? \ P!, a body literal is false w.r.t, so condition
1 of Def. 1 holds. For a rule € P! such thatd (r) N J~ # (), (a) a body literal of- is
false w.r.t.J (note that/ U —.J~ = J) or (b) an atonu in H(r) \ J~ is true w.r.t.J.
Concerning (a), observe that) —.J~ = J so (a) holds iff a body atom is false w.r.t.
I U~-.J~. Concerning (b), sincé™ C I, atoma is also true w.r.t/. In total, we have
shown that/~ is an unfounded set faP w.r.t. I, a contradiction td ~ = GUSp(I).
So[is indeed a minimal model g?/, and hence an answer setff m]

Since the existence of the GUS implies that the interp@tas unfounded-free, we
obtain also:

Corollary 3. A modell of a programP is unfounded-free iff is an answer set dP.

“ Note that by Def. 3, the existence 6US» (I) implies thatl is unfounded-free.

5 Computational Complexity

We will now study the complexity involved with unfounded selin particular, we are
interested in the question whether a total interpretasamifounded-free, as by Cor. 3
this notion can be fruitfully used for computing answer s&twoughout this section,
we assume that the truth value of aggregates can be estblistpolynomial time,
which is feasible for all aggregates currently availableABP systems. If, however,
aggregate truth valuation has a higher complexity, thd tmmplexity will increase
accordingly.

We first show membership for the full language, and then resslfior a restricted
fragment, implying completeness for both languages anthanyin between.

Theorem 6. Given a ground disjunctive logic prograf, and a total interpretatior?,
deciding whether is unfounded-free w.r.® is in co-NP.

Proof. The complementary problem (deciding whetligs not unfounded-free) is in
NP: GuessX C Bp and check that 1X is an unfounded set fdP w.r.t. I, and 2. that
X NI # (. Both 1. and 2. are feasible in polynomial time, assumingjdieéermining
the truth value of an aggregate literal can be done in polyaldime. |

Next we show that deciding unfounded-freeness is a hardgmobven for a simple
class of programs, provided that nonmonotone aggregatgbenpresent.

Theorem 7. Given a ground nondisjunctive, negation-free logic pragr® with ar-
bitrary aggregates, and a total interpretatian deciding whether is unfounded-free
w.r.t. P is co-NP-hard.

Proof. We give a reduction from the problem of unsatisfiability ofagositional SCNF
¢ = (ciVehVey) A A(]V eV eg') where each is a literal over one ofu
variablesV = {z1,...,x,}. We construct a prograf(¢):

z1(1) :— #avg{X : z:1(X)} = 0. z1(1) :— w. 21(0). ... z,(0).
z1(—1) :— #avg{X : z:(X)} = 0. z1(—1) :— w. w = p(ct), p(cs), plcs).

-mn(l) — #avg{X : z,(X)} = 0. xn(l) —w. w — p(c™), p(ch), p(cs?).
Zn(—1) :— #avg{X : z,(X)} = 0. ZTn(—1) :— w.

wherep(z;) = z;(1) andp(—z;) = z;(—1). Theng¢ is unsatisfiable iff the interpreta-
tion I(¢) = {w,x1(1),21(0), z1(—1),...,2,(1), 2,(0), 2, (—1)} is unfounded-free.

Indeed, ifo is a satisfying truth assignment féf, then X° = {w} U {x;(1) |
x; trueino} U {z;(—1) | z; false ing} is unfounded forP(¢) w.r.t. I(¢). It is easily
checked that for each rule iR(¢) with a head inX? at least one body literal is false
w.rt. I(¢) U—.X7.

On the other hand, let be a non-empty unfounded set B(¢) w.r.t. I(¢). Clearly,
z;(0) & X. If 2;(1) € X, thenz;(—1) ¢ X and vice versa, because if botk(1) €
X andx;(—1) € X, #avg{X : z;(X)} = 0 is true w.r.t.I(¢) and I(¢) U =.X.
Furthermore, if some;(1) € X orz;(—1) € X, then alsaw € X. If w € X, then for
each clause i some corresponding); (1) or z;(—1) must be inX. Itis easy to see that

this corresponds to a (possibly) partial truth assignmatigfying ¢, which can always
be extended to a total truth assignment satisfyin@o any non-empty unfounded set
X (henceX N1(¢) # 0) implies the existence of a satisfying truth assignmengfan

These results allow us to give a complete picture of the cerifyl of model check-
ing, reported on the left of Table 1. There, the rows indidhtekinds of aggregates
(m — monotoneg — antimonotonep — nonmonotone) allowed in programs, while the
columns vary over the presence of negation and disjunctiboo-NP entries are com-
pleteness results. The results in the first row are well-kmogsults of the literature
(cf. [19]), the P entries for{m, a} follow from recent results in [10], while the other
results are consequences of Thms. 5, 6, 7, Cor. 3, with ssfsath the literature.

It becomes clear from this table that a complexity increaseis with the presence
of either disjunction or nonmonotone aggregates, and, itapty, that these two fac-
tors together do not cause a further increase. Also in Tabta the right hand side,
we have summarized results from the literature (see [19]Bfdr the problem of cau-
tious reasoning. We observe that the complexity increasere@t the same places, and
indeed one can blame the necessity of co-NP checks fai7fheesults.

Concerning computation, we conjecture that, given the sgtrigs in properties
and complexity, techniques analogous to those describjdd jrran be used in order to
effectively and efficiently compute answer sets of prograritls arbitrary aggregates.

We will briefly discuss an important issue concerning corapah, though. It is
striking that from Table 1 it appears that a single, appéyéimnocent”, aggregate like
#count{< 1:a >,<2:b>} =1 will increase the reasoning complexity. Obviously,
this is not the case, as this aggregate can be rewritten t@aimaéent conjunction
#Hcount{<1l:a > <2:b>} <1, #count{< 1:a >,<2:b>}>1, thus eliminating
the nonmonotone aggregate. In fact, such a decompositiposisible for each non-
monotone aggregate, if one allows the use of custom agg®g@atther than a set of
fixed aggregates) and the introduction of new symbols. Hewehis operation is only
polynomial (and hence effective) if the number of the trusitue changes of the non-
monotone aggregate in the lattice of total interpretatioisiced by< is polynomi-
ally bounded. Note that all currently implemented nonmonetaggregates of DLV
(#avgis not) and Smodels are polynomially decomposable.

6 Related Work

To our knowledge, the only other works in which the notion nfaunded set has been
defined and studied for programs with aggregates are [1H®ever, both works
consider only nondisjunctive programs, and the latteriastitself to monotone and
antimonotone aggregates. As discussed in [10], the defindf [1] seems to ignore
aggregates at crucial points of the definition, and appedog incomparable with the
one in [10], and therefore also with Def. 1. Unfounded setslfsjunctive (aggregate-
free) programs had been defined and studied in [11]. In fasgral of our results
parallel those of [11]. We believe that for this reason thenpotational techniques
reported therein can be adapted to the aggregate setting.

Since unfounded sets have originally been used for defitiagvell-founded se-
mantics, one could do this also with our unfounded sets. Whais done (to some ex-

Checking 0 [{not}| {V} [{not,V} Cautious| 0 [{not }[{V}[{not,V}]
j P P |co-NP| co-NP 0 P |co-NP|IIY| 1IF

{m,a} | P P |co-NP| co-NP {m,a} |co-NP|co-NP|II{| II¥

{m,a,n}|co-NP| co-NP|co-NP| co-NP {m,a,n}| ¢ | of \of| it

Table 1. Complexity of Answer Set Checking (left) and Cautious Reasoning (right)

tent) in [11], but the recent work in [20] argues that for digjtive programs a somewhat
refined version of unfounded sets based on so-called motetatber than interpreta-
tions. Recently, a unifying framework for unfounded setd byop formulas has been
defined in in [15]. Also this work does not consider aggregdbeit we believe that the
results with aggregates should be generalizable in a simés.

Concerning semantics for programs with aggregates, espyettie last few years
have seen many proposals. We refer to [8] (the definition oictwbur work is based)
and [21] for overviews and comparisons.

7 Conclusion and Future Work

The semantics of logic programs with aggregates is notgsttfairward, especially in
presence of recursive aggregates. The characterizatfoagswer sets, provided in
Sec. 4, allow for a better understanding of the meaning offarmms with aggregates.
Our results give confidence in the appropriateness of anssteias defined in [8].

Furthermore, our results provide a handle on effective nusHor computing an-
swer sets for disjunctive programs with (possibly reciesind nonmonotone) aggre-
gates. An approach with a separation of model generatiomrenttkl checking (which
is co-NP in the worst case) is indicated by the complexitultsof Sec. 5. By defining
suitable operators analogously to [11], one can obtain fol@eans for pruning in the
generation phase, along with an effective instrument fodehohecking, as described
in [13, 14]. Our results should also be adaptable to be ugesifd-based ASP systems,
all of which rely on loop formulas, along the lines descrilre§l5].

Our complexity results provide a clear picture of the vasiguogram fragments
from the computational viewpoint. This is very useful focking the appropriate tech-
niques to be employed for the computation. In particulabeitame clear that in the
presence of only monotone and antimonotone aggregateshardee of disjunctions,
anNP computing scheme can be chosen. That is, there the focukldimon answer
set generation, while answer set checking is a simpler fsslsoon as honmonotone
aggregates or disjunctions are present, a two-level schas#o be employed, which
must focus on both answer set generation and checking, htdsits are hard. Impor-
tantly, the presence of both nonmonotone aggregates ajuhetisn does not further
raise the complexity. It should be noted that, as pointechbthie end of Sec. 5, many
nonmonotone aggregates can be decomposed into monotorantimdnotone ones,
including Smodels cardinality and weight constraints vpidsitive weights.

A main concern for future work is therefore the exploitatmfrour results for the
implementation of recursive aggregates in ASP systemegakdth a study on how to
generalize the notion for defining the well-founded sentarfor the full language.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Kemp, D.B., Stuckey, P.J.: Semantics of Logic Programs with éggpes. In: ISLP’91, MIT

Press (1991) 387-401

. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded &table Model Seman-

tics for Logic Programs with Aggregates. In Codognet, P., ed.: 12081, (2001) 212—-226

. Gelfond, M.: Representing Knowledge in A-Prolog. In: Computatitwgic. Logic Pro-

gramming and Beyond. LNCS 2408 (2002) 413-451

. Simons, P., Niemél I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. Artificial Intelligencel38(2002) 181-234

. Dell’Armi, T., Faber, W., lelpa, G., Leone, N., Pfeifer, G.: Aggate Functions in DLV. In:

ASP’03, Messina, Italy (2003) 274—288 Onlinehatt p: / / CEUR- W5. or g/ Vol - 78/ .

. Pelov, N., TruszcZyski, M.: Semantics of disjunctive programs with monotone aggregates -

an operator-based approach. In: NMR 2004. (2004) 327-334

. Pelov, N., Denecker, M., Bruynooghe, M.: Partial stable modmlidaigic programs with

aggregates. In: LPNMR-7. LNCS 2923

. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates jandisve logic programs: Se-

mantics and complexity. In: JELIA 2004. LNCS 3229

. Ferraris, P.: Answer Sets for Propositional Theorlest p: / / ww. ¢s. ut exas. edu/

user s/ ott o/ paper s/ propt heori es. ps (2004)

Calimeri, F., Faber, W., Leone, N., Perri, S.: Declarative aoch@tational Properties of
Logic Programs with Aggregates. In: Nineteenth International Joinf€Zence on Artificial
Intelligence (IJCAI-05). (2005) 406-411

Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models:ounfled Sets, Fixpoint
Semantics and Computation. Information and Computelt&5(1997) 69-112

Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning Ojpesafor Answer Set Program-
ming Systems. In: NMR’2002. (2002) 200-209

Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive LogiogPamming Systems by
SAT Checkers. Atrtificial Intelligencé5 (2003) 177-212

Pfeifer, G.: Improving the Model Generation/Checking Interplaigitbance the Evaluation
of Disjunctive Programs. In: LPNMR-7. LNCS, (2004) 220-233

Lee, J.: A Model-Theoretic Counterpart of Loop Formulatst p: / / www. cs. ut exas.
edu/ user s/ appsnur f/ paper s/ nt cl f. pdf (2004)

Baral, C.: Knowledge Representation, Reasoning and DeclaRrididem Solving. CUP
(2002)

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programd Bisjunctive Databases.
NGC9(1991) 365-385

Van Gelder, A., Ross, K., Schlipf, J.: The Well-Founded SemafticGeneral Logic Pro-
grams. JACM38(1991) 620-650

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity angEessive Power of Logic
Programming. ACM Computing Surve$8 (2001) 374-425

Wang, K., Zhou, L.: Comparisons and Computation of Well-fodrsemantics for Disjunc-
tive Logic Programs. ACM TOCI6 (2005)

Pelov, N.: Semantics of Logic Programs with Aggregates. PhD th¢sikolieke Univer-
siteit Leuven, Leuven, Belgium (2004)

