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Abstract. Recent research on answer set programming (ASP) systems,
has mainly focused on solving NP problems more efficiently. Yet, disjunc-
tive logic programs allow for expressing every problem in the complexity
classes ΣP

2 and ΠP
2 . These classes are widely believed to be strictly larger

than NP, and several important AI problems, like conformant and con-
ditional planning, diagnosis and more are located in this class.
In this paper we focus on improving the evaluation of ΣP

2 /ΠP
2 -hard ASP

programs. To this end, we define a new heuristic hDS and implement it
in the (disjunctive) ASP system DLV. The definition of hDS is geared
towards the peculiarites of hard programs, while it maintains the benign
behaviour of the well-assessed heuristic of DLV for NP problems.
We have conducted extensive experiments with the new heuristic. hDS

significantly outperforms the previous heuristic of DLV on hard 2QBF
problems. We also compare the DLV system (with hDS) to the QBF
solvers SSolve, Quantor, Semprop, and yQuaffle, which performed best in
the QBF evaluation of 2004. The results of the comparison indicate that
ASP systems currently seem to be the best choice for solving ΣP

2 /ΠP
2 -

complete problems.

1 Introduction

Answer Set Programming (ASP) is a novel programming paradigm, which has
been recently proposed in the area of nonmonotonic reasoning and logic program-
ming. The idea of answer set programming is to represent a given computational
problem by a logic program whose answer sets correspond to solutions, and then
use an answer set solver to find such a solution [1]. The knowledge representa-
tion language of ASP is very expressive in a precise mathematical sense; in its
general form, allowing for disjunction in rule heads and nonmonotonic negation
in rule bodies, ASP can represent every problem in the complexity class ΣP

2 and
ΠP

2 (under brave and cautious reasoning, respectively) [2]. Thus, ASP is strictly
more powerful than SAT-based programming, as it allows us to solve problems
which cannot be translated to SAT in polynomial time. The high expressive
power of ASP can be profitably exploited in AI, which often has to deal with
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problems of high complexity. For instance, problems in diagnosis and planning
under incomplete knowledge are complete for the complexity class ΣP

2 or ΠP
2

[3, 4], and can be naturally encoded in ASP [5, 6].
Most of the optimization work on ASP systems has focused on the efficient

evaluation of non-disjunctive programs (whose power is limited to NP/co-NP),
whereas the optimization of full (disjunctive) ASP programs has been treated in
fewer works (e.g., in [7, 8]). In particular, we are not aware of any work concerning
heuristics for ΣP

2 /ΠP
2 -hard ASP programs.

Since the model generators of ASP systems, like DLV [9] and Smodels [10],
are similar to the Davis-Putnam procedure, employed in many SAT solvers,
the heuristic (branching rule) for the selection of the branching literal (i.e., the
criterion determining the literal to be assumed true at a given stage of the
computation) is fundamentally important for the efficiency of an ASP system.
Some other systems, like ASSAT [11] or Cmodels [12] use a SAT solver directly
as a black box, and thus have limited means of tuning the heuristic. Also note
that all of Smodels, ASSAT, and Cmodels are confined to NP problems. Since
our focus is on harder problems, we will not consider these systems further.

In this paper, we address the following two questions:
◮ Can the heuristics of ASP systems be refined to deal more efficiently with
ΣP

2 /ΠP
2 -hard ASP programs?

◮ On hard ΣP
2 /ΠP

2 problems, can ASP systems compete with other AI systems,
like QBF solvers?

We define a new heuristic hDS for the (disjunctive) ASP system DLV. The
new heuristic aims at improving the evaluation of ΣP

2 /ΠP
2 -hard ASP programs,

but it is designed to maintain the benign behaviour of the well-assessed heuristic
of DLV on NP problems like 3SAT and Blocks-World, on which it proved to be
very effective [13]. We experimentally compare hDS against the DLV heuristic
on hard 2QBF instances, generated following recent works presented in the liter-
ature that describe transition phase results for QBFs [14, 15]. hDS significantly
outperforms the heuristic of DLV on 2QBF.

To check the competitiveness of ASP w.r.t. QBF solvers on hard problems, we
carry out an experimental comparison of the DLV system (with the new heuris-
tic hDS) with four prominent QBF solvers, which performed best at the 2004
QBF evaluation[16, 17]: SSolve, Semprop, Quantor, yQuaffle. The results of the
comparison, performed on instances used in the QBF competition and on a set
of randomly generated instances for the Strategic Companies problem, indicate
that ASP systems currently perform better than QBF systems on ΣP

2 /ΠP
2 -hard

problems.

2 Answer Set Programming Language

2.1 ASP Programs

A (disjunctive) rule r is a formula

a1 ∨ · · · ∨ an :− b1, · · · , bk, not bk+1, · · · , not bm.



where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The disjunction
a1∨· · ·∨an is the head of r, while the conjunction b1, · · · , bk, not bk+1, · · · , not bm

is the body, b1, · · · , bk the positive body, and not bk+1, · · · , not bm the negative
body of r.

An (ASP) program P is a finite set of rules. An object (atom, rule, etc.) is
called ground or propositional, if it contains no variables.

2.2 Answer Sets

Given a program P, let the Herbrand Universe UP be the set of all constants
appearing in P and the Herbrand Base BP be the set of all possible ground
atoms which can be constructed from the predicate symbols appearing in P
with the constants of UP .

Given a rule r, Ground(r) denotes the set of rules obtained by applying
all possible substitutions σ from the variables in r to elements of UP . Simi-
larly, given a program P, the ground instantiation Ground(P) of P is the set⋃

r∈P
Ground(r).

For every program P, we define its answer sets using its ground instantiation
Ground(P) in two steps: First we define the answer sets of positive programs,
then we give a reduction of general programs to positive ones and use this re-
duction to define answer sets of general programs.

A set L of ground literals is said to be consistent if, for every atom ℓ ∈ L,
its complementary literal not ℓ is not contained in L. An interpretation I for
P is a consistent set of ground literals over atoms in BP .1 A ground literal ℓ
is true w.r.t. I if ℓ ∈ I; ℓ is false w.r.t. I if its complementary literal is in I;
ℓ is undefined w.r.t. I if it is neither true nor false w.r.t. I. Interpretation I is
total if, for each atom A in BP , either A or not A is in I (i.e., no atom in BP

is undefined w.r.t. I). A total interpretation M is a model for P if, for every
r ∈ Ground(P), at least one literal in the head is true w.r.t. M whenever all
literals in the body are true w.r.t. M . X is an answer set for a positive program
P if it is minimal w.r.t. set inclusion among the models of P.

Example 1. For the positive program P1 = {a ∨ b ∨ c. , :−a.}, {b, not a, not c}
and {c, not a, not b} are the answer sets. For the positive program P2 = {a∨ b∨
c. , :−a. , b:−c. , c:−b.}, {b, c, not a} is the only answer set.

The reduct or Gelfond-Lifschitz transform of a general ground program P
w.r.t. an interpretation X is the positive ground program PX , obtained from
P by (i) deleting all rules r ∈ P whose negative body is false w.r.t. X and (ii)
deleting the negative body from the remaining rules.

An answer set of a general program P is a model X of P such that X is an
answer set of Ground(P)X .

1 We represent interpretations as set of literals, since we have to deal with partial
interpretations in the next sections.



(b)

e d

Z
Z}

-�
6 @@I

c

ba
���

(a)

@@I
c

ba
���

Fig. 1. Graphs (a) DGP4
, and (b) DGP5

Example 2. Given the (general) program P3 = {a∨ b:−c. , b:−not a, not c. , a∨
c:−not b.} and I = {b, not a, not c}, the reduct PI

3 is {a ∨ b:−c., b.}. I is an
answer set of PI

3 , and for this reason it is also an answer set of P3.

2.3 Some ASP Properties

Given an interpretation I for a ground program P,we say that a ground atom
A is supported in I if there exists a supporting rule r ∈ ground(P) such that the
body of r is true w.r.t. I and A is the only true atom in the head of r.

Proposition 1. [18–20] If M is an answer set of a program P, then all atoms
in M are supported.

Another relevant property of ASP programs is head-cycle freeness (HCF).
With every ground program P, we associate a directed graph DGP = (N,E),
called the dependency graph of P, in which (i) each atom of P is a node in N
and (ii) there is an arc in E directed from a node a to a node b iff there is a rule
r in P such that b and a appear in the head and body of r, respectively.

The graph DGP singles out the dependencies of the head atoms of a rule r
from the positive atoms in its body.2

Example 3. Consider the program P4 = {a∨ b. , c:−a. , c:−b.}, and the program
P5 = P4 ∪ {d∨ e:−a. , d:−e. , e:−d, not b.}. The dependency graph DGP4

of P4

is depicted in Figure 1 (a), while the dependency graph DGP5
of P5 is depicted

in Figure 1 (b).

The dependency graphs allow us to single out HCF programs [21]. A program
P is HCF iff there is no rule r in P such that two atoms occurring in the head
of r are in the same cycle of DGP .

Example 4. The dependency graphs given in Figure 1 reveal that program P4 of
Example 3 is HCF and that program P5 is not HCF, as rule d ∨ e← a contains
in its head two atoms belonging to the same cycle of DGP5

.

HCF programs are computationally easier than general (non-HCF) programs.

Proposition 2. [21, 2] 1. Deciding whether an atom belongs to some answer
set of a ground HCF program P is NP-complete. 2. Deciding whether an atom
belongs to some answer set of a ground (non-HCF) program P is ΣP

2 -complete.

2 Note that negative literals cause no arc in DGP .



3 Answer Set Computation

In this section, we describe the main steps of the computational process per-
formed by ASP systems. We will refer particularly to the computational engine
of the DLV system, which will be used for the experiments, but also other ASP
systems, like Smodels, employ a very similar procedure.

An answer set program P in general contains variables. The first step of a
computation of an ASP system eliminates these variables, generating a ground
instantiation ground(P) of P.3 The hard part of the computation is then per-
formed on this ground ASP program generated by the instantiator.

Function ModelGenerator(I: Interpretation): Boolean;
begin

I := DetCons(I);
if I = L then return False; (* inconsistency *)
if no atom is undefined in I then return IsAnswerSet(I);
Select an undefined ground atom A according to a heuristic;
if ModelGenerator(I ∪ {A}) then return True;
else return ModelGenerator(I ∪ {not A});

end;
Fig. 2. Computation of Answer Sets

The heart of the computation is performed by the Model Generator, which is
sketched in Figure 2. Roughly, the Model Generator produces some “candidate”
answer sets. The stability of each of them is subsequently verified by the func-
tion IsAnswerSet(I), which verifies whether the given “candidate” I is a minimal
model of the program Ground(P)I obtained by applying the GL-transformation
w.r.t. I and outputs the model, if so. IsAnswerSet(I) returns True if the compu-
tation should be stopped and False otherwise.

The ModelGenerator function is first called with parameter I set to the
empty interpretation.4 If the program P has an answer set, then the function
returns True setting I to the computed answer set; otherwise it returns False.
The Model Generator is similar to the Davis-Putnam procedure employed by
SAT solvers. It first calls a function DetCons(), which returns the extension
of I with the literals that can be deterministically inferred (or the set of all
literals L upon inconsistency). This function is similar to a unit propagation
procedure employed by SAT solvers, but exploits the peculiarities of ASP for
making further inferences (e.g., it exploits the knowledge that every answer set
is a minimal model). If DetCons does not detect any inconsistency, an atom A
is selected according to a heuristic criterion and ModelGenerator is called on
I ∪ {A} and on I ∪ {not A}. The atom A plays the role of a branching variable
of a SAT solver. And indeed, like for SAT solvers, the selection of a “good”
atom A is crucial for the performance of an ASP system. In the next section, we
describe a number of heuristic criteria for the selection of such branching atoms.

3 Note that ground(P) is not the full set of all syntactically constructible instances of
rules in P; rather, it is a subset of it having precisely the same answer sets as P.

4 Observe that the interpretations built during the computation are 3-valued, that is
a literal can be True, False or Undefined w.r.t. to an interpretation I.



Remark 1. On hard ASP programs (non-hcf programs), a very large part of the
computation-time may be consumed by function isAnswerSet(I), since it performs
a co-NP-complete task if the program is non-hcf.

4 Heuristics

Throughout this section, we assume that a ground ASP program P and an
interpretation I have been fixed. Here, we describe the two heuristic criteria
that will be compared in Section 5. We consider “dynamic heuristics” (the ASP
equivalent of UP heuristics for SAT5), that is, branching rules where the heuristic
value of a literal Q depends on the result of taking Q true and computing its
consequences. Given a literal Q, ext(Q) will denote the interpretation resulting
from the application of DetCons (see previous section) on I ∪ {Q}; without loss
of generality, we assume that ext(Q) is consistent, otherwise Q is automatically
set to false and the heuristic is not evaluated on Q at all.

The Heuristic of DLV (hUT ). The heuristic employed by the DLV system
was proposed in [13], where it was shown to be very effective on relevant problems
like 3Satisfiability, Hamilthonian Path, Blocks World, and Strategic Companies.

A peculiar property of answer sets is supportedness: For each true atom A
of an answer set I, there exists a rule r of the program such that the body of
r is true w.r.t. I and A is the only true atom in the head of r. Since an ASP
system must eventually converge to a supported interpretation, ASP systems try
to keep the interpretations “as much supported as possible” during the interme-
diate steps of the computation. To this end, the DLV system counts the number
of UnsupportedTrue (UT) atoms, i.e., atoms which are true in the current inter-
pretation but still miss a supporting rule (further details on UTs can be found
in [22] where they are called MBTs). For instance, the rule :−not x implies that
x must be true in every answer set of the program; but it does not give a “sup-
port” for x. Thus, in the DLV system x is taken true to satisfy the rule, and it
is added to the set of UnsupportedTrue; it will be removed from this set once a
supporting rule for x will be found (e.g., x∨b:−c is a supporting rule for x in the
interpretation I = {x, not b, c}). Given a literal Q, let UT (Q) be the number
of UT atoms in ext(Q). Moreover, let UT2(Q) and UT3(Q) be the number of
UT atoms occurring, respectively, in the heads of exactly 2 and 3 unsatisfied
rules w.r.t. ext(Q). The heuristic hUT of DLV considers UT (Q), UT2(Q) and
UT3(Q) in a prioritized way, to favor atoms yielding interpretations with fewer
UT/UT2/UT3 atoms (which should more likely lead to a supported model). If
all UT counters are equal, then the heuristic considers the total number Sat(Q)
of rules which are satisfied w.r.t. ext(Q).

The heuristic hUT is “balanced”, that is, the heuristic values of an atom Q
depends on both the effect of taking Q and not Q.

5 The UP heuristic for SAT adds for each variable x a unit clause x and -x, respec-
tively, and makes two independent unit propagations. The choice is then based on
information thus obtained.



For an atom Q, let UT ′(Q) = UT (Q) + UT (not Q), UT ′
2(Q) = UT2(Q) +

UT2(not Q), UT ′
3(Q) = UT3(Q) + UT3(not Q), and, eventually, Sat′(Q) =

Sat(Q) + Sat(not Q). Given two atoms A and B:

1. A <hUT
B if UT ′(A) > UT ′(B);

2. otherwise, A <hUT
B if UT ′(A) = UT ′(B) and UT ′

2(A) > UT ′
2(B);

3. otherwise, A <hUT
B if UT ′

2(A) = UT ′
2(B) and UT ′

3(A) > UT ′
3(B);

4. otherwise, A <hUT
B if UT ′

3(A) = UT ′
3(B) and Sat′(A) < Sat′(B).

A <hUT
-maximum atom A is selected by the heuristic hUT of DLV; A is

taken positive or negative, by comparing the values of UT (A), UT2(A), UT3(A),
and Sat(A), with UT (not A), UT2(not A), UT3(not A), and Sat(not A), re-
spectively, as above.

Example 5. Consider P6 = {a ∨ b ∨ c. , d ∨ e ∨ f. , :−not w. , w:−a. , w:−d. ,
a ∨ z:−w. , b ∨ z:−w. , :−d, z. , :−a, z. , }, and let the current interpretation
I = {w}; atom w is UT. a and d are the <hUT

-maxima, as only assuming their
truth can eliminate the UT w. Indeed, anything apart from a or d would be a
poor choice.

The New Heuristic (hDS). The unsupported true atoms are, in a sense, the
hardest constraints occurring in an ASP program. Indeed, as pointed out above,
an unsupported true atom x is intuitively like a unary constraint :−not x, which
must be satisfied. By minimizing the UT atoms and maximizing the satisfied
rules, the heuristic hUT tries to drive the DLV computation toward a supported
model (i.e., all rules are satisfied and no UT exists). Intuitively, supported models
have good chances to be answer sets (while unsupported models are guaranteed
to be not answer sets), and, for simple classes of programs (e.g., tight stratified
disjunctive programs) the supported models are precisely the answer sets. If the
program is not tight and stratified, then supported models are not guaranteed
to be answer sets; but answer-set checking can be done efficiently if the program
is HCF.

For hard ASP programs (i.e., non-HCF programs – they express ΣP
2 -complete

problems under brave reasoning), supported models are often not answer sets.
Answer-set checking is computationally expensive (co-NP-complete), and may
consume a large portion of the resources needed for computing an answer set.

The heuristic hDS , described next, tries to drive the computation toward
supported models having higher chances to be answer sets, reducing the overall
number of the expensive answer-set checks. Models having a “higher degree of
supportedness” are preferred, where the degree of supportedness is the average
number of supporting rules for the true atoms (note that this number is higher
than one, on supported models). Intuitively, if all true atoms have many sup-
porting rules in a model M , then the elimination of an atom from the model
would violate many rules, and it becomes less likely finding a subset of M which
is a model of PM , to disprove that M is an answer set.

We next formalize this intuition to define the new heuristic hDS . Given a
literal Q, let True(Q) be the number of true non-HCF atoms in ext(Q), and let



SuppRules(Q) be the number of all supporting rules for non-HCF atoms w.r.t.
ext(Q). Intuitively, the heuristic maximizes the “degree of supportedness” of the
interpretation, intended as the ratio between the number of supporting rules and
the number of true atoms. Also in this case, the heuristic is “balanced”, it takes
into account both the atom and its complement.

Moreover, it is defined as a refinement of the heuristic hUT (i.e., A <hUT
B ⇒

A <hDS
B). In this way, hDS keeps the same nice behaviour as the well-assessed

hUT on NP problems like 3SAT and Blocks-World, where hUT proved to be very
effective [13]; while, as we will see in Section 5 it sensibly improves on hUT on
hard 2QBF problems (ΣP

2 -complete). Given two atoms A and B:

1. A <hDS
B if A <hUT

B;
2. otherwise, A <hDS

B if B 6<hUT
A and DS(A) < DS(B)

where DS(Q) = SuppRules(Q)/True(Q) + SuppRules(not Q)/True(not Q).6

The heuristic selects a <hDS
-maximum atom A; A is taken positive or nega-

tive, by comparing the degree of supportedness of A and not A.

Example 6. Reconsider Example 5 with the interpretation being I = {w}. We get
ext(a) = {w, a, b, not z, not c}, ext(d) = {w, d, a, b, not z, not c, not e, not f}.
DS(a) = 3/3, since w ← a; a ∨ z ← w and b ∨ z ← w are supporting rules
for the three true non-HCF atoms w, a, b. On the other hand, DS(d) = 4/3,
since w ← d is an additional supporting rule for the same three true non-HCF
atoms w, a, b. Therefore a <hDS

d holds. Indeed, d is a better choice than a, as
it leads immediately to an answer set. a would require at least another choice,
and choosing e or f would cause a failing model check.

5 Comparing hUT vs hDS: Experiments

The proposed heuristic aims at improving the performance of DLV on hard (ΣP
2 -

complete) ASP programs. While there are many experimental works benchmark-
ing ASP systems on NP-complete problems, less is available for ΣP

2 -complete
problems. We resort to 2QBF, the canonical problem, and one of the few ΣP

2 -
hard problems for which some transition phase results are known [14, 15].

The problem here is to decide whether a quantified Boolean formula (QBF)
Φ = ∃X∀Y φ, where X and Y are disjoint sets of propositional variables and
φ = C1 ∨ . . . ∨ Ck is a 3DNF formula over X ∪ Y , is valid. The transformation
from 2QBF to disjunctive logic programming is based on a reduction used in [23].
The propositional disjunctive logic program Pφ produced by the transformation
requires 2 ∗ (|X|+ |Y |) + 1 predicates (with one dedicated predicate w).

Our benchmark instances were generated following recent works presented in
the literature that describe transition phase results for QBFs [14, 15], see [9],
for a thorough discussion. In all generated instances, the number of ∀-variables
in any formula is the same as the number of ∃-variables (that is, |X| = |Y |) and
each disjunct contains at least two universal variables. Moreover, the number of
clauses is ((|X|+ |Y |)/2)0.5.

6 The denominator is increased by 1, in order to avoid possible divisions by zero.
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Fig. 3. Running Times on Random QBF problems

Experiments were performed on a PentiumIV 1500 MHz machine with 256MB
RAM running SuSe Linux 9.0. Time measurements have been done using the
time command shipped with SuSe Linux 9.0.

We generated 100 random QBF instances for each problem size. The results
of our experiments are displayed in Fig. 3. For each instance, we allowed a
maximum time of 7200 seconds (two hours). The line of a system stops whenever
some problem instance was not solved within this time limit. On the vertical axis,
we report, respectively, the average and the maximum running time in seconds
over the 100 instances of the respective size, in logarithmic scale.

It is evident that the new heuristic hDS outperforms the heuristic hUT in
these experiments. Heuristic hUT stopped at size 56; while heuristic hDS solved
all instances up to size 92. To solve an instance of size 56, hUT took 3455.85s;
while hDS required at most 5.13s and 0.12s on average for instances of this size.
Heuristic hUT could not solve a 60-variables instance within 2 hours of cpu time;
while hDS took at most 12.41s and 0.64s on average for solving these.

6 ASP vs QBF Solvers

One may wonder whether ASP systems are competitive with other systems on
ΣP

2 /ΠP
2 -hard problems. Currently it seems that QBF solvers are the most promi-

nent (and efficient) non-ASP-systems for such problems.
In order to answer this question, we carry out an experimental comparison

of DLV (with the heuristic described in this paper) with QBF solvers which
performed best at the 2004 QBF evaluation [16, 17]: SSolve [24] (in the version
used at the 2004 QBF evaluation), Semprop [25] (version v01.06.04), Quantor
[26] (version 1.3pre1), and yQuaffle [27] (version 093004). We use two different
sets of benchmarks, which we describe in the following sections.

6.1 QBF Evaluation

The first group of benchmarks constitute the ΣP
2 - and ΠP

2 -complete QBF in-
stances of the 2004 QBF evaluation, which we obtained from the qbflib web site
[16]. These instances are of four different kinds: (1) Letz-tree, (2) Narizzano-
robot, (3) Pan-Kph, and (4) hard random-instances, see [16] for details. In
total, our suite contains 143 2QBF instances: 2 Letz-tree, 32 Narizzano-robot, 1
Pan-Kph, and 108 random instances. For DLV we used a standard propositional



DLV Quantor Semprop yQuaffle SSolve

Robot 32 (100%) 10 (31%) 17 (53%) 21 (67%) 22 (69%)
Random 108 (100%) 14 (13%) 96 (89%) 55 (51%) 103 (95%)
Tree 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Pan − Kph 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)

Total 143 (100%) 27 (19%) 116 (81%) 79 (55%) 128 (90%)

Table 1. Number (and percentage) of instances solved within the allowed time.

encoding as described in Sec. 5, while for the QBF systems we used directly the
qDimacs format.

The experiments were performed on the same machine as those of Sec. 5. For
each instance, we have allowed a maximum running time of 1800 seconds (30
minutes). Again, we have limited the process size to 256MB to avoid swapping.

Table 1 displays, for each system, the number and percentage of instances
which have been solved under the resource limitations. Summarizing, DLV could
solve all instances (100%) and is therefore clearly the best among the compared
systems. Among the QBF solvers, SSolve and Semprop could solve 81% and 88%
of the instances, respectively, and thus performed significantly better than both
yQuaffle (55%) and Quantor (19%). It should be noted that practically all of the
unsolved instances for Quantor are due to excessive memory consumption, while
for the other systems they are due to time-outs. Indeed, we have tried to run
Quantor on some of its unsolved instances manually: Within the first minute of
CPU time (several minutes real-time due to swapping), it had typically allocated
around 500MB, and after two minutes (around half an hour in real time) more
than 700MB, still growing. We then aborted the test to avoid a machine lock-up.

SSolve Semprop Quantor yQuaffle

# solved 128 116 27 79

solver avg 43,86 68,18 4,74 55,24
DLV avg 38,95 43,50 10,94 49,05

Table 2. Average time (seconds) on instances solved by QBF systems

While SSolve and Semprop did significantly better on the random instances
than on the ”Narizzano-robot” instances, the situation is inverse for Quantor
and yQuaffle, which confirms the observations in [17].

Also when comparing the average runtime between DLV and each QBF solver
(on the instances solved by the respective system), DLV usually has an edge, as
Table 2 shows. The average runtime of DLV is only larger when comparing to
Quantor; but given that this comparison is based only on 19% of all instances,
this is rather insignificant.

6.2 Strategic Companies

The second group of benchmarks is made up of randomly generated instances
for the Strategic Companies problem, as defined in [28]. We use the same DLV

program and generation method as in [9].
Here, we generated tests as in [9] with 20 instances each size for m companies

(5 ≤ m ≤ 200), 3m products, 10 uniform randomly chosen contr by relations



per company (up to four controlling companies), and uniform randomly chosen
prod by relations (up to four producers per product). The problem is deciding
whether two fixed companies (1 and 2, without loss of generality) are strategic.

For the QBF solvers we have produced the following formula: ∃c1, . . . , cn :
∀c′1, . . . , c

′
n : ((I ∧NE)→ (R∧R′)∧ c1 ∧ c2) where I stands for (c′1 → c1)∧ . . .∧

(c′n → cn), NE for ¬((c′1 ↔ c1) ∧ . . . ∧ (c′n ↔ cn)), R for
∧m

i=1
((

∧
cj∈Oi

cj) →

ci) ∧
∧n

i=1
(
∨

gi∈Cj
cj) (Oi contains the controlling companies of ci, while Cj

contains the companies producing good j. R′ is defined analogous to R on the
primed variables.

Unfortunately this formula is not in CNF, as required by the qDimacs format.
In order to avoid a substantial blowup of the formula by a trivial normalization,
we have used the tool qst of the traquasto suite [29], which transforms a formula
into qDimacs by introducing additional “label variables” to avoid exponential
formula growth. However, these additional variables are existentially quantified
at the inner level and thus would turn the formula above into a 3QBF. To avoid
this, we consider the negated formula ∀c1, . . . , cn : ∃c′1, . . . , c

′
n : ¬((I ∧ NE) →

(R ∧R′) ∧ c1 ∧ c2), which stays on the second level after the transformation.
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Fig. 4. Average (left) and maximum (right) timings for Strategic Companies

In the same experimental setting as before, we obtained the results of Fig. 4.7

It is evident that DLV scales significantly better than the QBF solvers (note
that the vertical axis is logarithmic), and can solve all instances of up to 175
companies, while the QBF solver fail to solve instances of 40 companies.

7 Conclusion

In this paper, we have presented a new heuristic method for ASP systems, which
is geared towards hard problems on the second level of the polynomial hierarchy.
We have implemented this method in the state-of-the-art system DLV, and
showed that it is beneficial for the performance of the system.

To our knowledge, this is the first work dealing with heuristics dedicated for
ΣP

2 /ΠP
2 -hard ASP programs. Previous optimization techniques for this segment

have been concerned with the model checking portion, which is important for
this class of problems. In our work, we attack the problem earlier, in the model

7 yQuaffle is not included, as it triggered assertions on some of the input files.



generation phase, and can therefore cut on the model checks. Importantly, this
heuristics has been incorporated in a way such that the benign behavior on
NP/co-NP programs w.r.t. the previous heuristic of DLV is maintained.

We experimentally verified that the new heuristic significantly improves the
DLV system performance on randomly generated hard 2QBF instances, reduc-
ing the average execution time, enlarging the maximum solvable size of these
problems for a fixed time limit.

We also carried out an experimental comparison of DLV (with the heuristic
described in this paper) with the best QBF solvers of the 2004 QBF evaluation
[16, 17]: SSolve [24], Semprop [25], Quantor [26], and yQuaffle [27]. This compari-
son was done on benchmark instances of the 2004 QBF evaluation, and Strategic
Companies. In both cases, DLV could outperform the QBF solvers, often sig-
nificantly. DLV was able to solve all the instances of the 2004 QBF evaluation
within the given resource limitations, while the best QBF system solved 88%,
and the worst only 19%. Also for Strategic Companies, DLV exhibited much bet-
ter performance. We therefore conclude that ASP systems are currently the best
choice for solving ΣP

2 /ΠP
2 -complete problems. All benchmark data is available

at http://www.dlvsystem.com/examples/tests-sigma2-2005.tar.gz.
We note again that QBF solvers are designed for solving also harder problems

than the ones considered here. Nevertheless, they are used for solving problems
of this kind, especially planning problems, cf. [30]. However, from our results we
have to conclude that DLV appears to be the better choice for ΣP

2 /ΠP
2 -complete

problems
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