nfn2dlp and nfnsolve: Normal Form Nested Programs
Compiler and Solver

Annamaria Bria, Wolfgang Faber, and Nicola Leone

Department of Mathematics, University of Calabria, 87036 Rende, (€8)
{a.bria, faber, | eone}@rat . unical .it

Abstract. Normal Form NestedF'N) programs have recently been introduced
in order to allow for enriching the syntax of disjunctive logic programsaurde
answer sets semantics. In particular, heads of rules can be disjunctioos-
junctions, while bodies can be conjunctions of disjunctions. Different toyma
other proposals of this kindVFN programs may contain variables, and a no-
tion of safety has been defined for guaranteeing domain independdoce-
over, NFN programs can be efficiently translated to standard disjunctive logic
programs DLP).

In this paper we present the tadi n2dl p, a compiler forNFN programs, which
implements an efficient translation from saf&N programs to saféLP pro-
grams. The answer sets of the origiddF'N program can be obtained from the
answer sets of the transformed program (which in turn can be obtajnesirg

a DLP system) by a simple transformation. The system has been implemented
using the object-oriented programming language Ruby and Treetopgaaga

for Parsing Expression Grammars (PEGS). It currently proddild3 programs

in the format of DLV. The separate scripf nsol ve uses DLV as a back-end

to compute answer sets f&WFN programs. Thus, combining the two tools we
obtain a system which supports the powefii'N language, and is available for
experiments.

1 Introduction

Disjunctive logic programming under the answer set serosuffiL.P, ASP) has been
acknowledged as a versatile formalism for knowledge repragion and reasoning dur-
ing the last decade. The heads (resp. the bodie$)[#f rules are disjunctions (resp.
conjunctions) of simple constructs, viz. atoms and literhd [1], we proposed Normal
Form Nested programs that are an extension of DisjunctiggdBrograms with vari-
ables. In particular the head of &N rule is a formula in disjunctive normal form;
while the body is a formula in conjunctive normal form. Weid®d also a polynomial
translation fromNEN programs taDLP programs. The main idea of the algorithm is
to introduce new atoms in order to rewrite conjunctions apipg in the head of the
rules and disjunctions appearing in the bodies. This redlalvs for evaluatingVFN
programs using DLP systems, such as DLV [2], GnT [3], or CnisRIE].

In this paper we describe a tool implementing the efficieahdfation from safe
NFN programs to safé&LP programs presented in [1], called n2dl p. The system

provides anNFN parser and safety checker, and an efficient translation tqaiv-
alent DLP program. The output program is in the format of DLV, statehs-art im-
plementation for disjunctive logic programs under the arsset semantics, and thus
allows for effective answer set computation/gf’N programs. A second tool, called
nf nsol ve, automates this procedure and directly computes answefts&tFN pro-
grams by translating them infaL.P programs (in the same way aén2dl p), and then
invoking DLV on them, filtering out all symbols that have beaetroduced during the
translation to produce the answer sets of the ingkilv programs.

2 Normal Form Nested Programs

In this section, we briefly introduce syntax, semantics aafdtg of NFN programs.
For a more detailed discussion, we refer to [1].

Syntax We consider a first-order language without function symhIEN programs
are finite sets of rules of the form

Cl\/...\/Cn:-Dl,...,Dm. n,m >0

where each of’y, . . ., C, is a positive basic conjunctidia, . . ., a,) ofatomsas, . .. , a,,
and each oDy, ..., D,, is a basic disjunctiofil; v ... Vv l,) of literalsiy, ..., l,. The
parentheses around basic conjunctions and disjunctiopdmamittedCy v ...V C,
is thehead, andD,, . .., D,, is thebody of a rule. ANNFN program is calledtandard
if all basic conjunctions and disjunctions are singletteréls.
In our experience, the need for going beyond DLP arisesivelgtoften in real
world applications. As an example, we recall a consisteatyjanswering setting from
[1]: According to [5], a global relatiop(I D, name, surname, age) (for persons) with
a key-constraint on the first attribufeD is “repaired” by intensionally deleting one
of them whenever two tuples would share the same key. In Dii®,i$ done by the
following rules @ denotes deleted tuples, the resulting consistent relation).
p(I,N,S,A)vVp(I,M,T,B):-p(I,N,S,A),p(I, M, T,B), N # M.
p(I,N,S,A)vp(I,M,T,B):-p(I,N,S,A),p(I, M,T,B),S #T.
p(I,N,S,A)Vp(I,M,T,B):-p(I,N,S,A),p(I, M, T, B),A # B.
p'(I,N,S,A):-p(I,N, S, A),notp(I, N, S, A).

The first three DLP rules can be written as a singieV rule.

ﬁ(I,N,S,A)\/ﬁ([,M,T,B)Z-p(LN,S,A),p(LM,T7B)7(N75M\/S;ET\/A;ISB)A

Safety Let r be anNFN rule. A variableX in r is restricted if there exists a positive
basic disjunctionD in the body ofr, such that, for eaclh € D, X occurs ina; we also
say thatD savesX and X is made safe by. A rule is safe if each variable appearing
in the head and each variable that appears in a negative el hre restricted. An
NFEN program is safe if each of its rules is safe.

Safe programs have the important property of domain inddgrece, that is, their
semantics is invariant with respect to the given universddiag as it is large enough).

SemanticsWe consider ground instantiations ¥’V programs with respect to a given
universe. When considering safé"'N programs, the Herbrand universe is sufficient.
An interpretation for a safe NFN program P can therefore be denoted as a subset
of the Herbrand base. The satisfaction of ground rules rpnétations is defined in
the classical way, interpreting rules as implications. Ateipretation that satisfies a
program is called aodel.

Thereduct of a ground progran® with respect to an interpretatiah denoted by
P, is obtained by(1) deleting all false literals w.r.f. from rule bodies, and (2) deleting
all rules s.t. any basic disjunction becomes empty dfter An interpretation/ is an
answer set for P iff I is a subset-minimal model faP?. We denote the set of answer
sets forP by AS(P).

3 An Efficient Translation from NEN to DLP

In this section we will review the rewriting algorithnewriteNFN from [1], to which
we refer for a more detailed description. The basic streotdirewriteNFN is shown in
Fig. 1. The input forewriteNFN is a safeVFN programP and it builds and eventually
returns a safe standafdL P program,Ppr,p. The algorithm transforms one rule at a
time. For eachVE'N rule, it constructs onmajor rule, which maintains the structure of
the NFN rule, replacing complex head and body structures by apjatedabels. Head
and body of the major rule are built independently by meanfsieftionsbuildHead
andbuildBody, respectively, which will be described in the sequel of Hastion. These
functions may also create a number of auxiliary rules, fdinileg labels and auxiliary
predicates which are needed mostly for guaranteeing saffég transformed program.

begin rewriteNFN
Input: NEFN programP
Output: DLP programPprp.
var B: conjunction of literals;H: disjunction of atoms;
Pprp = 0;
for eachruler € P do
H := buildHead(H (), Pprp);
B = bUI'dBOdy(B’(V“)7 PDLP);
Pprp := Pprp U {H - B.};
return Pprp,
Fig. 1. Algorithm rewriteNFN

3.1 Head Transformation

FunctionbuildHead is comparatively lightweight and replaces non-singulatee struc-
tures by fresh label atoms. For each head conjunciiofia ruler containing more than
one atom, a label atom with the fresh predicate namdé;, and all variables irC is
created in its place. In order to act as a substitutefpthe function also creates aux-
iliary rulesauxh;(...) :- C. anda; :- auxh (.. .). for eacha; € C. The safety of the

auxiliary rules is straightforward, and the safety of thganaule is guaranteed by the
safety of the originalVF'N program and the body transformation described next.

3.2 Body Transformation

More care has to be taken in functibuildBody. Since not all variables in a saféFV
rule body have to be restricted, just replacing body digjons by labels as foNFN
heads may result in an unsafe auxiliary rule because of agstriuted variable. If the
variable in question occurs only in its body disjunctiorcan be safely dropped from
the label atom, but if this variable occurs also elsewhetbérrule, the values it repre-
sents must match in each of its occurrences, while in somgn@wes the variable may
not be bound to any value. TherefobejldBody focuses orshared variables, where a
variable X is shared in a ruler, if it appears in two different body disjunctions afor
if X appears in both head and body of the rule.

For creating the body of the major rulayildBody replaces each body disjunction
D of aruler containing more than one literal by a label atamx}, (V4, ..., V,,), where
aux’, is a fresh symbol andty, ..., V,, are the shared variables ofoccurring inD.
An auxiliary rule for definingauxy, (V1, ..., V,) is added for each literal iV, where
variables not occurring in a literal are replaced by the gbeonstant#u, representing
that the respective variable is not bound in this occurreNtmeover, if the literal is
negative, some newniverse atoms (see [1]) are added to the body defining the label
atom, which in turn are defined by appropriate auxiliary suteince#u has to match
with any other constant, matching has to be made explicherbody of the major rule
by adding dedicated atoms, which are also defined by auxiiides.

3.3 Properties of the Algorithm

Let P a safeNFN program,Pprp = rewriteNFN(P), and Ay and. Ap be the sets
of predicate symbols that appearihand in Ppp, respectively 4y C Ap). Then,
there is a bijection betweeAS(Pprp) and AS(P) such that/ € AS(Pprp) iff J N
Axn € AS(P). As mentioned previously, all rules generatedrbyriteNFN are safe.
Moreover, the complexity of the algorithm is a small polyriam

4 Systemanf n2dl p and nf nsol ve

Algorithm rewriteNFN, along with anNFN parser and safety checker has been imple-
mented as a front-end OLP systems. Currently, the syntax of the system DLV is sup-
ported, but the implementation is decoupled from DLV and easily be modified for
supporting othe®DLP systems such as GnT or Cmodels3. The resulting tools, called
nf n2dl p (for translating only) anchf nsol ve (for additionally invoking aDLP
backend), are publicly available At t p: / / www. mat . uni cal . i t/ sof t war e/

nf n2dl p/ . In the following we provide some information about issueghe im-
plementation mainly ohf n2dl p. Moreover, we give a description of the usage of
nf n2dl p andnf nsol ve.

4.1 Implementation ofnf n2dl p and nf nsol ve

The toolsnf n2dl p andnf nsol ve have been implemented using the language Ruby
[6], an object-oriented language rooted also in functi@mal scripting languages.

Both tools exploit anVFN parser, implemented using the téaleet op [7], which
provides a parser generator for Parsing Expression Grasm(R&Gs) [8] for Ruby.
PEGs are a novel concept for parser specification, whichdauokar to classical gram-
mars but differ in semantics; most importantly these gramragoid ambiguity.

The tools rely on a code base which has been constructed aisiobject-oriented
design: For all language constructs, such as atoms, 8tebbakic disjunctions, basic
conjunctions and rules, appropriate Ruby classes exidtffanrespective objects are
created during parsing. The safety check has been impleahasta method of the rule
class.

Moreover, two classes for handling rewriting have been éefiiRewriteHead and
RewriteBody, respectively. These classes contain abuatis the respectivFN struc-
ture (head and body, respectively), a correspondifify structure for constructing the
major rule, and a set of auxiliaripLP rules. The methods of these classes effectively
implementbuildHead andbuildBody.

For nf nsol ve, all predicate symbols of th&FN program are collected during
parsing, which are then used to filter the answer sets of thétten program computed
by the external solver (exploiting thef i | t er option of DLV), which then represent
precisely the answer sets of th&"N program.

Bothnf n2dl p andnf nsol ve provide a basic commandline interface, which we
overview in Sections 4.2 and 4.3.

4.2 Usingnf n2dl p

The interface ohf n2dl p is via the command-line. By defauhf n2dl p reads the

files provided as arguments, treats their contents asNdi¥ program, analyzes its
well-formedness and safety, and eventually translatestdat & DLP program, which

will be provided on standard output.

Example 1. Consider the prograr® represented in the text fiex. nf n as
a,b(X) -e(X)Vvd(X,Y). (). d(2,3).
In order to test for safety and to transfodinto a DLP program, we issue

$nfn2dl p.rb ex.nfn

on the command line. Since the program is safe, the rewnitegram is printed on
standard output:

a:-auzhl 0(X). b(X):-auzhl 0(X). auzhl 0(X):-a,b(X). c(1).
auzl0(X) - ¢(X). auxl0(X):-d(X,Y). auzrhl 0(X) :- aurl 0(X). d(2,3).
The answer sets of th®F N program can be computed by pipelining the output into

DLV using the command

$nfn2dlp.rb ex.nfn|DLV--

yielding answer sefc(1),d(2,3), a, auxhl1_0(1), auxhl_0(2),b(1),b(2), aux1-0(1),
auz10(2)}. The answer sets of the originAlF'N programP can be obtained by fil-
tering on the original predicates i

$nfn2dlp.rb ex.nfn|DLV-- -filter=a,b,c,d
yielding the answer sdtc(1),d(2,3), a,b(1),b(2)}.

4.3 Usingnf nsol ve

Alsonf nsol ve possesses a command-line interfacenfAr2dl p, nf nsol ve reads
the files provided as arguments, and treats their contenotsed8F’N program, analyzes
its well-formedness and safety, and eventually translatego a DLP program. In
addition, it invokes DLV as a backend. The location of the Déxecutable can be
specified following option d or alternatively- - dl v, the default beinddLV in the
path. Moreover, additional options can be passed on to DLVhbgans of the option
--dl vopt i ons; care should be taken that those options should form one feord
the shell, which means that usually those options shouldubéeq.

Example 2. Continuing Example 1 and prografrepresented in filex. nf n, we can
issue (provided that the defalllL V is an executable in the path):

$nfnsolve.rb ex.nfn
DLV [build BEN Qct 11 2007 gcc 4.1.2]

{c(1), d(2,3), a, b(1), b(2)}

If the DLV executable is to be invoked ag d and if this executable is to be passed
options- si | ent (suppressing the banner with version and compiler infoionaaind
- nof act s (not printing facts), we issue and obtain:

$nfnsolve.rb -d ./d --dlvoptions '-silent -nofacts’ ex.nfn

fa, b(1), b(2)}

References

1. Bria, A., Faber, W., Leone, N.: Normal form nested prograins.Proceedings of the 11th
European Conference on Logics in Atrtificial Intelligence (JELIA 20Q@8JCS 5293, (2008)
76-88

2. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Persj,S8arcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM T@QB)(2006) 499-562

3. Janhunen, T., Niemi|l.: Gnt - a solver for disjunctive logic programs. In: LPNMR-7.CH
2923, (2004) 331-335

4. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. LRNMR’05. LNCS
3662, (2005) 447-451

5. Bertossi, L.E.: Consistent query answering in databases. SIGRe&ifrd35(2) (2006)

68-76

Flanagan, D., Matsumoto, Y.: The Ruby Programming Langua{feilly (2008)

Sobo, N.it reet op homepagét t p: / / treet op. rubyf orge. org/.

Ford, B.: Parsing expression grammars: a recognition-basegdcsiz foundation. In: POPL

2004. (2004) 111-122

©o N

