
nfn2dlp and nfnsolve: Normal Form Nested Programs
Compiler and Solver

Annamaria Bria, Wolfgang Faber, and Nicola Leone

Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{a.bria,faber,leone}@mat.unical.it

Abstract. Normal Form Nested (NFN) programs have recently been introduced
in order to allow for enriching the syntax of disjunctive logic programs under the
answer sets semantics. In particular, heads of rules can be disjunctionsof con-
junctions, while bodies can be conjunctions of disjunctions. Different to many
other proposals of this kind,NFN programs may contain variables, and a no-
tion of safety has been defined for guaranteeing domain independence. More-
over,NFN programs can be efficiently translated to standard disjunctive logic
programs (DLP).
In this paper we present the toolnfn2dlp, a compiler forNFN programs, which
implements an efficient translation from safeNFN programs to safeDLP pro-
grams. The answer sets of the originalNFN program can be obtained from the
answer sets of the transformed program (which in turn can be obtained by using
a DLP system) by a simple transformation. The system has been implemented
using the object-oriented programming language Ruby and Treetop, a language
for Parsing Expression Grammars (PEGs). It currently producesDLP programs
in the format of DLV. The separate scriptnfnsolve uses DLV as a back-end
to compute answer sets forNFN programs. Thus, combining the two tools we
obtain a system which supports the powerfulNFN language, and is available for
experiments.

1 Introduction

Disjunctive logic programming under the answer set semantics (DLP , ASP) has been
acknowledged as a versatile formalism for knowledge representation and reasoning dur-
ing the last decade. The heads (resp. the bodies) ofDLP rules are disjunctions (resp.
conjunctions) of simple constructs, viz. atoms and literals. In [1], we proposed Normal
Form Nested programs that are an extension of Disjunctive Logic Programs with vari-
ables. In particular the head of anNFN rule is a formula in disjunctive normal form;
while the body is a formula in conjunctive normal form. We provided also a polynomial
translation fromNFN programs toDLP programs. The main idea of the algorithm is
to introduce new atoms in order to rewrite conjunctions appearing in the head of the
rules and disjunctions appearing in the bodies. This resultallows for evaluatingNFN

programs using DLP systems, such as DLV [2], GnT [3], or Cmodels3 [4].
In this paper we describe a tool implementing the efficient translation from safe

NFN programs to safeDLP programs presented in [1], callednfn2dlp. The system

provides anNFN parser and safety checker, and an efficient translation to anequiv-
alentDLP program. The output program is in the format of DLV, state-of-the-art im-
plementation for disjunctive logic programs under the answer set semantics, and thus
allows for effective answer set computation ofNFN programs. A second tool, called
nfnsolve, automates this procedure and directly computes answer sets forNFN pro-
grams by translating them intoDLP programs (in the same way asnfn2dlp), and then
invoking DLV on them, filtering out all symbols that have beenintroduced during the
translation to produce the answer sets of the inputNFN programs.

2 Normal Form Nested Programs

In this section, we briefly introduce syntax, semantics and safety of NFN programs.
For a more detailed discussion, we refer to [1].

Syntax We consider a first-order language without function symbols. NFN programs
are finite sets of rules of the form

C1 ∨ . . . ∨ Cn :- D1, . . . ,Dm. n,m ≥ 0

where each ofC1, . . . , Cn is a positive basic conjunction(a1, . . . , an) of atomsa1, . . . , an

and each ofD1, . . . ,Dm is a basic disjunction(l1 ∨ . . . ∨ ln) of literalsl1, . . . , ln. The
parentheses around basic conjunctions and disjunctions may be omitted.C1 ∨ . . .∨Cn

is thehead, andD1, . . . ,Dm is thebody of a rule. AnNFN program is calledstandard
if all basic conjunctions and disjunctions are singleton literals.

In our experience, the need for going beyond DLP arises relatively often in real
world applications. As an example, we recall a consistent query answering setting from
[1]: According to [5], a global relationp(ID, name, surname, age) (for persons) with
a key-constraint on the first attributeID is “repaired” by intensionally deleting one
of them whenever two tuples would share the same key. In DLP, this is done by the
following rules (p denotes deleted tuples,p′ the resulting consistent relation).

p(I, N, S, A) ∨ p(I, M, T, B) :- p(I, N, S, A), p(I, M, T, B), N 6= M.

p(I, N, S, A) ∨ p(I, M, T, B) :- p(I, N, S, A), p(I, M, T, B), S 6= T.

p(I, N, S, A) ∨ p(I, M, T, B) :- p(I, N, S, A), p(I, M, T, B), A 6= B.

p′(I, N, S, A) :- p(I, N, S, A), not p(I, N, S, A).

The first three DLP rules can be written as a singleNFN rule.

p(I, N, S, A) ∨ p(I, M, T, B) :- p(I, N, S, A), p(I, M, T, B), (N 6= M ∨ S 6= T ∨ A 6= B).

Safety Let r be anNFN rule. A variableX in r is restricted if there exists a positive
basic disjunctionD in the body ofr, such that, for eacha ∈ D, X occurs ina; we also
say thatD savesX andX is made safe byD. A rule is safe if each variable appearing
in the head and each variable that appears in a negative body literal are restricted. An
NFN program is safe if each of its rules is safe.

Safe programs have the important property of domain independence, that is, their
semantics is invariant with respect to the given universe (as long as it is large enough).

SemanticsWe consider ground instantiations ofNFN programs with respect to a given
universe. When considering safeNFN programs, the Herbrand universe is sufficient.
An interpretation for a safeNFN programP can therefore be denoted as a subset
of the Herbrand base. The satisfaction of ground rules by interpretations is defined in
the classical way, interpreting rules as implications. An interpretation that satisfies a
program is called amodel.

The reduct of a ground programP with respect to an interpretationI, denoted by
P I , is obtained by(1) deleting all false literals w.r.t.I from rule bodies, and (2) deleting
all rules s.t. any basic disjunction becomes empty after(1). An interpretationI is an
answer set for P iff I is a subset-minimal model forP I . We denote the set of answer
sets forP by AS(P).

3 An Efficient Translation from NFN to DLP

In this section we will review the rewriting algorithmrewriteNFN from [1], to which
we refer for a more detailed description. The basic structure of rewriteNFN is shown in
Fig. 1. The input forrewriteNFN is a safeNFN programP and it builds and eventually
returns a safe standardDLP program,PDLP . The algorithm transforms one rule at a
time. For eachNFN rule, it constructs onemajor rule, which maintains the structure of
theNFN rule, replacing complex head and body structures by appropriate labels. Head
and body of the major rule are built independently by means offunctionsbuildHead
andbuildBody, respectively, which will be described in the sequel of thissection. These
functions may also create a number of auxiliary rules, for defining labels and auxiliary
predicates which are needed mostly for guaranteeing safetyof the transformed program.

begin rewriteNFN
Input: NFN programP

Output: DLP programPDLP .
var B: conjunction of literals;H: disjunction of atoms;

PDLP := ∅;
for each ruler ∈ P do

H := buildHead(H(r), PDLP);
B := buildBody(B(r), PDLP);
PDLP := PDLP ∪ {H :- B.};

return PDLP ;
Fig. 1.Algorithm rewriteNFN

3.1 Head Transformation

FunctionbuildHead is comparatively lightweight and replaces non-singular nested struc-
tures by fresh label atoms. For each head conjunctionC of a ruler containing more than
one atom, a label atom with the fresh predicate nameauxhr

C and all variables inC is
created in its place. In order to act as a substitute forC, the function also creates aux-
iliary rulesauxhr

C(. . .) :- C. andai :- auxhr

C(. . .). for eachai ∈ C. The safety of the

auxiliary rules is straightforward, and the safety of the major rule is guaranteed by the
safety of the originalNFN program and the body transformation described next.

3.2 Body Transformation

More care has to be taken in functionbuildBody. Since not all variables in a safeNFN

rule body have to be restricted, just replacing body disjunctions by labels as forNFN

heads may result in an unsafe auxiliary rule because of an unrestricted variable. If the
variable in question occurs only in its body disjunction, itcan be safely dropped from
the label atom, but if this variable occurs also elsewhere inthe rule, the values it repre-
sents must match in each of its occurrences, while in some occurrences the variable may
not be bound to any value. Therefore,buildBody focuses onshared variables, where a
variableX is shared in a ruler, if it appears in two different body disjunctions ofr, or
if X appears in both head and body of the rule.

For creating the body of the major rule,buildBody replaces each body disjunction
D of a ruler containing more than one literal by a label atomauxr

D
(V1, . . . , Vn), where

auxr

D
is a fresh symbol andV1, . . . , Vn are the shared variables ofr occurring inD.

An auxiliary rule for definingauxr

D
(V1, . . . , Vn) is added for each literal inD, where

variables not occurring in a literal are replaced by the special constant#u, representing
that the respective variable is not bound in this occurrence. Moreover, if the literal is
negative, some newuniverse atoms (see [1]) are added to the body defining the label
atom, which in turn are defined by appropriate auxiliary rules. Since#u has to match
with any other constant, matching has to be made explicit in the body of the major rule
by adding dedicated atoms, which are also defined by auxiliary rules.

3.3 Properties of the Algorithm

Let P a safeNFN program,PDLP = rewriteNFN(P), andAN andAD be the sets
of predicate symbols that appear inP and inPDLP , respectively (AN ⊆ AD). Then,
there is a bijection betweenAS(PDLP) andAS(P) such thatJ ∈ AS(PDLP) iff J ∩
AN ∈ AS(P). As mentioned previously, all rules generated byrewriteNFN are safe.
Moreover, the complexity of the algorithm is a small polynomial.

4 Systemsnfn2dlp and nfnsolve

Algorithm rewriteNFN, along with anNFN parser and safety checker has been imple-
mented as a front-end toDLP systems. Currently, the syntax of the system DLV is sup-
ported, but the implementation is decoupled from DLV and caneasily be modified for
supporting otherDLP systems such as GnT or Cmodels3. The resulting tools, called
nfn2dlp (for translating only) andnfnsolve (for additionally invoking aDLP

backend), are publicly available athttp://www.mat.unical.it/software/
nfn2dlp/ . In the following we provide some information about issues in the im-
plementation mainly ofnfn2dlp. Moreover, we give a description of the usage of
nfn2dlp andnfnsolve.

4.1 Implementation ofnfn2dlp and nfnsolve

The toolsnfn2dlp andnfnsolve have been implemented using the language Ruby
[6], an object-oriented language rooted also in functionaland scripting languages.

Both tools exploit anNFN parser, implemented using the tooltreetop [7], which
provides a parser generator for Parsing Expression Grammars (PEGs) [8] for Ruby.
PEGs are a novel concept for parser specification, which looksimilar to classical gram-
mars but differ in semantics; most importantly these grammars avoid ambiguity.

The tools rely on a code base which has been constructed usingan object-oriented
design: For all language constructs, such as atoms, literals, basic disjunctions, basic
conjunctions and rules, appropriate Ruby classes exist, and the respective objects are
created during parsing. The safety check has been implemented as a method of the rule
class.

Moreover, two classes for handling rewriting have been defined, RewriteHead and
RewriteBody, respectively. These classes contain as attributes the respectiveNFN struc-
ture (head and body, respectively), a correspondingDLP structure for constructing the
major rule, and a set of auxiliaryDLP rules. The methods of these classes effectively
implementbuildHead andbuildBody.

For nfnsolve, all predicate symbols of theNFN program are collected during
parsing, which are then used to filter the answer sets of the rewritten program computed
by the external solver (exploiting the-filter option of DLV), which then represent
precisely the answer sets of theNFN program.

Bothnfn2dlp andnfnsolve provide a basic commandline interface, which we
overview in Sections 4.2 and 4.3.

4.2 Usingnfn2dlp

The interface ofnfn2dlp is via the command-line. By default,nfn2dlp reads the
files provided as arguments, treats their contents as oneNFN program, analyzes its
well-formedness and safety, and eventually translates it into aDLP program, which
will be provided on standard output.

Example 1. Consider the programP represented in the text fileex.nfn as

a, b(X) :- c(X) ∨ d(X,Y). c(1). d(2, 3).

In order to test for safety and to transformP into aDLP program, we issue

$ nfn2dlp.rb ex.nfn

on the command line. Since the program is safe, the rewrittenprogram is printed on
standard output:

a :- auxh1 0(X). b(X) :- auxh1 0(X). auxh1 0(X) :- a, b(X). c(1).
aux1 0(X) :- c(X). aux1 0(X) :- d(X, Y). auxh1 0(X) :- aux1 0(X). d(2, 3).

The answer sets of theNFN program can be computed by pipelining the output into
DLV using the command

$ nfn2dlp.rb ex.nfn | DLV --

yielding answer set{c(1), d(2, 3), a, auxh1 0(1), auxh1 0(2), b(1), b(2), aux1 0(1),
aux1 0(2)}. The answer sets of the originalNFN programP can be obtained by fil-
tering on the original predicates inP :

$ nfn2dlp.rb ex.nfn | DLV -- -filter=a,b,c,d

yielding the answer set{c(1), d(2, 3), a, b(1), b(2)}.

4.3 Usingnfnsolve

Alsonfnsolve possesses a command-line interface. Asnfn2dlp,nfnsolve reads
the files provided as arguments, and treats their contents asoneNFN program, analyzes
its well-formedness and safety, and eventually translatesit into a DLP program. In
addition, it invokes DLV as a backend. The location of the DLVexecutable can be
specified following option-d or alternatively--dlv, the default beingDLV in the
path. Moreover, additional options can be passed on to DLV bymeans of the option
--dlvoptions; care should be taken that those options should form one wordfor
the shell, which means that usually those options should be quoted.

Example 2. Continuing Example 1 and programP represented in fileex.nfn, we can
issue (provided that the defaultDLV is an executable in the path):

$ nfnsolve.rb ex.nfn
DLV [build BEN/Oct 11 2007 gcc 4.1.2]

{c(1), d(2,3), a, b(1), b(2)}

If the DLV executable is to be invoked as./d and if this executable is to be passed
options-silent (suppressing the banner with version and compiler information) and
-nofacts (not printing facts), we issue and obtain:

$nfnsolve.rb -d ./d --dlvoptions ’-silent -nofacts’ ex.nfn
{a, b(1), b(2)}

References

1. Bria, A., Faber, W., Leone, N.: Normal form nested programs.In: Proceedings of the 11th
European Conference on Logics in Artificial Intelligence (JELIA 2008). LNCS 5293, (2008)
76–88

2. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL7(3) (2006) 499–562

3. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctive logic programs. In: LPNMR-7. LNCS
2923, (2004) 331–335

4. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In:LPNMR’05. LNCS
3662, (2005) 447–451

5. Bertossi, L.E.: Consistent query answering in databases. SIGMODRecord35(2) (2006)
68–76

6. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language. O’Reilly (2008)
7. Sobo, N.:treetop homepagehttp://treetop.rubyforge.org/.
8. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation. In: POPL

2004. (2004) 111–122

