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Abstract. In answer-set programming (ASP), the main focus usually is on com-
puting answer sets which correspond to solutions to the problem reprddmn

a logic program. Simple reasoning over answer sets is sometimes g pgr
ASP systems (usually in the form of computing brave or cautious corseqs),

but slightly more involved reasoning problems require external postgeing.
Generally speaking, it is often desirable to use (a subset of) bravautioas
consequences of a progrdfn as input to another prograf in order to provide

the desired solutions to the problem to be solved. In practice, the evaluétion o
the programP; currently has to be decoupled from the evaluatiorPefusing

an intermediate step which collects the desired consequenégsamid provides
them as input taPs. In this work, we present a novel method for representing
such a procedure within single program, and thus within the realm of ASP
itself. Our technique relies on rewriting, into a so-callednanifold program
which allows for accessing all desired consequenceB;ofvithin a single an-
swer set. Then, this manifold program can be evaluated jointly Rjtavoiding

any intermediate computation step. For determining the consequencestivthin
manifold program we useeak constraintswhich is strongly motivated by com-
plexity considerations. As applications, we present encodings for atimgpthe
ideal extension of an abstract argumentation framework and for atmgpyorid
views of a particular class of epistemic specifications.

1 Introduction

In the last decadeinswer Set Programmin@\SP) [1, 2], also known as A-Prolog [3,
4], has emerged as a declarative programming paradigm. s\8eli suited for mod-

elling and solving problems which involve common-senseaaang, and has been fruit-
fully applied to a wide variety of applications includingaginosis (e.g. [5]), data inte-
gration (e.g. [6]), configuration (e.qg. [7]), and many othévioreover, the efficiency of

the latest tools for processing ASP programs (so-called #@ers) reached a state
that makes them applicable for problems of practical impuré [8]. The basic idea
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of ASP is to compute answer sets of a logic program from whiehsblutions of the
problem encoded by the program can be obtained.

However, frequently one is interested not only in the sohdiper se, but rather in
reasoning tasks that have to take some or even all solutogccount. As an exam-
ple, consider the problem of database repair, in which angilatabase instance does
not satisfy some of the constraints imposed in the datal@ase.can attempt to mod-
ify the data in order to obtain a consistent database by ¢haras little as possible.
This will in general yield multiple possibilities and can éecoded conveniently using
ASP (see, e.g., [9]). However, usually one is not interesidatie repairs themselves,
but in the data which is present @l repairs. For the ASP encoding, this means that
one is interested in the elements which occur in all answisr #gese are also known
ascautious consequencdadeed, ASP systems provide special interfaces for comput
ing cautious consequences by means of query answering.oBwgtgnes one has to
do more, such as answering a complex query over the cautimsequences (not to
be confused with complex queries over answer sets). So &P, folvers provide no
support for such tasks. Instead, computations like thie havwe done outside ASP
systems, which hampers usability and limits the potenfi&lsP.

In this work, we tackle this limitation by providing a techne, which transforms
an ASP programP into a manifold programMp which we use to identify all con-
sequences of a certain type (we consider here the well-krommnepts of brave and
cautious consequence, but also definite consequence [it@]h & singleanswer set.
The main advantage of the manifold approach is that thetiegylrogram can be ex-
tended by additional rules representing a query over theebfar cautious, definite)
consequences of the original progrdm thereby using ASP itself for this additional
reasoning. In order to identify the consequences, wengsk constraint§l1], which
are supported by the ASP-solver DLV [12]. Weak constraiatgehbeen introduced to
prefer a certain subset of answer sets via penalizatiorir ike for computing conse-
quences is justified by a complexity-theoretic argumene €m show that computing

consequences is complete for the complexity cla§ﬁ?$P or FPfE (depending on
the presence of disjunction), for which also computing arssets for programs with
weak constraints is complétevhich means that an equivalent compact ASP program
without these extra constructs does not exist, unless tlyag@mial hierarchy collapses.
In principle, other preferential constructs similar to weanstraints could be used as
well for our purposes, as long as they meet these complesgfyirements.

We discuss three particular applications of the manifoldragch. First, we spec-
ify an encoding which decides the SAT-relat@gique minimal model problemvhich
is closely related to closed-world reasoning [13]. The sdgaroblem stems from the
area of argumentation (cf. [14] for an overview) and consdhe computation of the
ideal extension [15] of an argumentation framework. Fohlprbblems we make use of
manifold programs of well-known encodings (computing afidals of a CNF-formula

3 The first of these results is fairly easy to see, for the second, it wagngtid] that the related
P
decision problem is complete for the cla®8’ or ©3’, from which theFP||" and FPﬁ2

results can be obtained. Also note that frequently cited 3P, and co-NPJI¥ completeness
results hold for brave and cautious query answering, respectivelpob for computing brave
and cautious consequences.



for the former application, computing all admissible exiens of an argumentation
framework for the latter) in order to compute consequerEgtensions by a few more
rules then directly provide the desired solutions, reqgitittle effort in total. As a final

application, we consider an encoding for (a certain sub@fsepistemic specifications
as introduced by Gelfond [16]. In a nutshell, these spetifina are extensions of ASP
programs, which may include modal atoms to allow for reasgprdver answer-sets
within the object language, and thus are closely relatedruesof the ideas we present
here. Epistemic specifications (already introduced in 129]) have received increas-
ing interest only over the last years (see, e.g. [18-21]hbutadays get more and more

recognized as an highly expressive and important extemdistandard answer-set pro-
gramming.

Organization and Main Results. After introducing the necessary background in the
next section, we

— introduce in Section 3 the concept of a manifold program &writing proposi-
tional programs in such a way that all brave (resp. cautide®nite) consequences
of the original program are collected into a single answer se

— lift the results to the non-ground case (Section 4); and

— present applications for our technique in Section 5. Inipalgr, we provide ASP
encodings for computing the ideal extension of an arguntientéramework and
for computing world views of a particular class of epistespecifications.

The paper concludes with a brief discussion of related arttiduwork.

2 Preliminaries

In this section, we review the basic syntax and semanticsSéf With weak constraints,
following [12], to which we refer for a more detailed defioii.

An atomis an expressiop(ty, . . .,t,, ), wherep is apredicateof arity a(p) = n > 0
and eacht; is either a variable or a constantliferal® is either an atom or its negation
not a.

A (disjunctive) ruler is of the form

a1 V -V oap - by,...,bg, not bgy1,..., not by,

withn >0,m >k >0,n+m > 0, and whereu, ..., a,,b1,...,b, are atoms.
Theheadof r is the setH (r) = {ay, ..., a,}, and thebodyof r is the setB(r) =
{b1,...,bk, not bg11, ..., not by, }. FurthermoreB*(r) = {by,...,bx} andB~(r) =
{bk+1,---,bm}. We will sometimes denote a ruteas H (r) - B(r).
A weak constrainfl1] is an expressiowc of the form

i~ b1, ..., bk, nOt by, ..., 0Ot by [w ]

4 For keeping the framework simple, we do not consider strong negatibisipaper. However,
the formalism can easily be adapted to deal with them.



wherem > k > 0 andby,...,b,, are literals, whileweight(wc) = w (the weigh)
and! (theleve)) are positive integer constants or variables. For convesigy and/or
I may be omitted and are set to 1 in this case. The Bétsc), BT (wc), and B~ (wc)
are defined as for rules. We will sometimes denote a weak @onsic as:~ B(wc).

A program P is a finite set of rules and weak constraints. We will often sesai-
colons for separating rules and weak constraints in ordewtdd ambiguities. With
Rules(P) we denote the set of rules it and W C(P) denotes the set of weak con-
straints inP. w? . andl” = denote the maximum weight and maximum level over
WC(P), respectively. A program (rule, atom)gsopositionalor groundif it does not
contain variables. A program is callsttongif WC(P) = ), andweakotherwise.

For any progranP, let Up be the set of all constants appearindirif no constant
appears inP, an arbitrary constant is added &&-); let Bp be the set of all ground
literals constructible from the predicate symbols appepim P and the constants of
Up; and letGround(P) be the set of rules and weak constraints obtained by applying
to each rule and weak constraint fhall possible substitutions from the variables in
P to elements of/p. Up is usually called thederbrand Universeof P and Bp the
Herbrand Basef P.

A ground ruler is satisfiedby a setl of ground atoms iff (r) N I # () whenever
Bt(r) C ITandB~(r) NI = 0. I satisfies a ground prograf, if eachr € P is
satisfied byl. For non-groundP, I satisfiesP iff I satisfiesRules(Ground(P)). A
ground weak constraintc is violatedby I, iff B* (wc) C I andB~ (wc) N1 = 0; itis
satisfied otherwise.

Following [22], a setl C Bp of atoms is aranswer sefor a strong progran® iff
it is a subset-minimal set that satisfies thduct

Pl ={H(r)- BT (r) | INB~(r) = 0,r € Ground(P)}.

A set of atomd C Bp is ananswer sefor a weak progran® iff I is an answer set
of Rules(P) and HE™n4(P)(T) is minimal among all the answer sets Bfiles(P),
where the penalization functiol ©’ () for weak constraint violation of a ground pro-
gramP is defined as follows:

HP(1) = Yl (fp(0) - Sewr (r) weight (w))
fp(1) =1, and
fr(n) = fp(n—1)-|WC(P)| - wk . +1 forn > 1.

where NP (I) denotes the set of weak constraintsifin level i violated byI. For
any programP, we denote the set of its answer setsA§(P). In this paper, we use
only weak constraints with weight and level 1, for whig""°“"4(")(T) amounts to
the number of weak constraints violatedlin

A ground atoma is abrave (sometimes also called credulous or possible) conse-
quence of a progran®?, denotedP =, a, if a € A holds for at least onél € AS(P).
A ground atonu is acautious(sometimes also called skeptical or certain) consequence
of a programP, denotedP =, a, if a € A holds for allA € AS(P). A ground atormu
is adefiniteconsequence [10] of a prograf denotedP =, a, if a is a cautious con-
sequence of and AS(P) # 0. The sets of all brave, cautious, definite consequences
of a programP are denoted aBC(P), CC(P), DC(P), respectively.



3 Propositional Manifold Programs

In this section, we present a translation which essent@iyates a copy of a given
strong propositional program for each of (resp. for a sub$gits atoms. Thus, we
require several copies of the alphabet used by the giverrgmg

Definition 1. Given a sefl of literals, a collectiornZ of sets of literals, and an atom
definel* = {p® | atomp € I} U {not p* | not p € I} andZ® = {I* | I € Z}.

The actual transformation to a manifold is given in the nesfindtion. We copy a
given programP for each atonmu in a given setS, whereby the transformation guaran-
tees the existence of an answer set by enabling the copidgiocoally.

Definition 2. For a strong propositional progran® and .S C Bp, define itsmanifold
(w.rt. S) as

Py = U {H(r)*=- {c}UB(r)* |a € S}U{c:- noti ; i:- notc}.
rcP

We assumép N Bptr = 0, that is, all symbols iP%" are assumed to be fresh.

Example 1.Consider
¢={pvqr ; r=p;r-q}
for which we haveAS(®) = {{p,r}, {q,r}}, and thusBC(®) = {p,q,r} and
CC(®) = DC(?) = {r}. When forming the manifold foBs = {p,q,r}, we ob-
@ pPVgP-c; rP-c,p? 5 P-c,qP 5 c-mnoti ;
P, =PIVl c; rlsept s rls el ;i mote ;
prvg -c; r=-e,pt ;- q"

Note that given a strong prograf and.S C Bp, the construction o4 can be
done in polynomial time (w.r.t. the size &f). The answer sets of the transformed pro-
gram consist of all combinations (of siz€|) of answer sets of the original program
(augmented by) plus the special answer sgt} which we shall use to indicate incon-
sistency ofP.

Proposition 1. For a strong propositional progran® and a setS C Bp, AS(PY") =
AU {{i}}, where

]

A= {U A;U{ch | (Ar,... Aig)) € [T AS(P)*}.

acsS
Note that] [ denotes the Cartesian product in Proposition 1.

Example 2.For & of Example 1, we obtain thatS(97% ) consists of{i} plus (copies
of {¢, r} are underlined for readability)

T T y4 q ' T
{e,pPrP p9 9, p" "} {e, ¢®,rP gt r? g7 "},
Y4 T T q T T T T
{e,q®,r? p2,rt, p" v} {e,pP, P, g% r p" T} {e, pP P ptrd g e}
P q T T P T T q T T
{e,q? P, q8,rt pm ey {e, ¢ rP pd,r g " {e, pP P gl Y g7 T )




Using this transformation, each answer set encodes aniasnof an atom with
some answer set of the original program. If an atoiis a brave consequence of the
original program, then a witnessing answer set exists, wbdntains the atom®. The
idea is now to prefer those atom-answer set associationsewthe answer set is a
witness. We do this by means of weak constraints and peredizie association where
the atom is not in the associated answer set, that is, wifei®not in the answer set
of the transformed program. Doing this for each atom meaattsait optimal answer set
will not containa® only if there is no answer set of the original program thattams
a, SO eachu® contained in an optimal answer set is a brave consequenhbe ofiginal
program.

Definition 3. Given a strong propositional prograi andS C Bp, let
PY =Py U{:~nota®|ac SU{:~i}

Observe that all weak constraints are violated in the spaower se{:}, while in
the answer sefc} (which occurs if the original program has an empty answeraiet
but:~ i are violated.

Proposition 2. Given a strong propositional programl® and S C Bp, forany A €
AS(P%), {a|a® € A} = BC(P)N S.

This result would also hold without including- i in P2 It has been included
for clarity and for making the encoding more uniform withpest to the encoding for
definite consequences, which will be presented below.

Example 3.For the progran® as given Example 1,
P =% U{i~mnotp’ ; :~motq? ; i~motr” 5 i~ il
We obtain thatd (2%, ) = {A1, A2}, where

_ q T .
Al - {c7pparp7qq7r15p , T }7
_ ro.r
A2 - {cvpparpquarqaq , T }7

as these two answer sets are the only ones that violate no eogestraint. We can
observe thafa | a® € A1} = {a | a® € A2} = {p,q,r} = BC(P).

Concerning cautious consequences, we first observe thatafgam is inconsistent
(in the sense that it does not have any answer set), each@toautious consequence.
But if P is inconsistent, thed’” will have only {i} as an answer set, so we will need
to find a suitable modification in order to deal with this in tteerect way. In fact, we
can use a similar approach as for brave consequences, lalizgethose associations
where an atom is contained in its associated answer set. piya answer set will
thus containa® for an atom only ifa is contained in each answer set. If an answer
set containing exists, it is augmented by all atom$, which also causes all weak
constraints to be violated.



Definition 4. Given a strong propositional prograi andS C Bp, let
P =Pl u{i~a"|aeStuU{a"-ilac S}uU{i~i}

Proposition 3. Given a strong propositional program® and S C Bp, forany A €
AS(P§%), {a|a* € A} =CC(P)NS.

Similar to P%¢, this result also holds without including i.

Example 4.Recall progranm® from Example 1. We have

c _ plr . .o RSN G
By =P, UL~ pl 5 gty oo™ pPmiy @l m iy =0 i)

We obtain thatdS(P55, ) = {As, A4}, where

ror.

A3 = {C7qp7rp7pq7rqap , T }7
_ ¥ q ' T

A4 - {c7qp7r17pq7r15q , T }7

as these two answer sets are the only ones that violate oalweak constraint, namely
:~1". We observe thafa | a® € A3} ={a | a® € Ay} = {r} = CC(P).

We next consider the notion of definite consequences. [Bifteio cautious conse-
guences, we do not add the annotated atoms to the answemsainow:. However,
this answer set should never be among the optimal ones uniefise only one. There-
fore we inflate it by new atom#&, all of which incur a penalty. This guarantees that this
answer set will incur a higher penalty3p| + 1) than any other<€ |Bp|).

Definition 5. Given a strong propositional prograi® andS C Bp, let
Pl = Pl uU{i~a®; i%- iy i~ i% | a € SPU {i~ i}

Proposition 4. Given a strong propositional programl® and S C Bp, forany A €
AS(Pd),{a|a* € A} = DC(P)N S.

Example 5.Recall program® from Example 1. We have

d t
D5, =P, U{i~pl s v gty i
PP=dy il-d i md g i~ i i i~ i)
As in Example 4,43 and A4 are the only ones that violate only one weak constraint,
namely:~ ", and thus are the answer setsigf .

Obviously, one can compute all brave, cautious, or defiritesequences of a pro-
gram by choosing’ = Bp. We also note that the programs from Definitions 3, 4 and
5 yield multiple answer sets. However each of these yieldstime atoms®, so it is
sufficient to compute one of these. The programs could bendgtein order to admit
only one answer set by suitably penalizing all atathga # b). To avoid interference
with the weak constraints already used, these additionakwenstraints would have
to pertain to a different level.



4 Non-Ground Manifold Programs

We now generalize the techniques introduced in Section diBgnound strong pro-
grams. The first step in Section 3 was to define the notion obtation. There, we
annotated propositional atoms with propositional atorisoAn the non-ground case,
we want to annotate atoms with atoms in some way, but it ismotédiately clear what
kind of atoms should be used for annotations — ground atomsmground atoms?

The first thought would be to annotate using ground atomsesalfter all the goal
is to produce a copy of the program for each possible groundezpuence. This would
amount mean annotating each predicate (and thus also escjwith ground atoms of
some subset of the Herbrand Base. For example, annotaéimglép(X,Y) - ¢(X,Y)
with the set{r(a),(b)} would yield the annotated rulgg(® (X,Y) - ¢"(*)(X,Y)
andp”® (X,Y) - ¢"®(X,Y). The tacit assumption here is thdt) andr(b) are the
only two ground instances of predicatevhich are of interest.

Since we want to keep our description as general as possiBl@ssume anno-
tation using the full Herbrand Base. In this scenario it nsagense to annotate with
non-ground atoms, in order to ease readability and redwcsitie of the (non-ground)
manifold program. In particular, the arguments of these-gimund atoms should be
mutually different variables, in order to represent allgibe ground instances of the
atom. The idea is that we can then use the standard groundiirgtion also on the
annotations.

In the example given earlier, we would annotate usig). In order to be able
to fall back on the regular grounding defined for non-anmatgtrograms, we will
annotate using only the predicateand extend the arguments pf yielding the rule
d(X,Y, Z) - dj(X,Y, Z) (we use predicate symba#§ andd;, rather tharp” andq”
just for pointing out the difference between annotation Bdjrates versus annotation
by ground atoms).

This notation is quite general, as it can restrict the aniwta to ground atoms
of special interest by adding appropriate atoms to the ratéybln our example, this
amounts to writingp”(X,Y, Z) - ¢"(X,Y, Z),rdom(Z) where the predicatedom
identifies the instances offor which annotations should be produced. In the following,
recall that(p) denotes the arity of a predicate

Definition 6. Given an atonu = p(¢1,...,t,) and a predicatey, let af;" be the atom
di(ty, .. tn, X1,. .., Xa(q) WhereXy, ..., Xo () are fresh variables and is a new
predicate symbol with/(d?) = a(p) +a(q). Furthermore, given a set of literals, and
a predicatey, let £" be{a!" | atoma € L} U {not a] | not a € L}.

Note that we assume that even though the variahlgs . ., X, are fresh, they
will be the same for each occurrencm@’f. We define the manifold program in analogy
to Definition 2, the only difference being the different wdyaonotating.

Definition 7. Given a strong progran® and a setS of predicates, define itmanifold
as

Pl = U {H(r)J - {c}UB(r) | g€ S}U{c-noti ; i:- notc}.
reP



Example 6.Consider program

U ={p(X)Va(X)-r(X); r(a)= ; r(b):}

for which
AS(@) = { {p(a),p(b),r(a),r(b)},
{p(a), q(b),r(a),r(b)},
{a(a), p(b),r(a), r(b)},
{a(a),q(b),r(a), (D)} }.

Hence, we hav&8C(¥) = {p(a), p(b), ¢(a), q(b),r(a),r(b)} and moreoveC' C(¥) =
DC(¥) = {r(a),r(b)}. Forming the manifold fol5 = {p}, we obtain

wlr — dg(X“Xl) \/dij(Xle) - dzr)(X7X1)aC 5
dP(a,X1)-c; d2(b,X1)- ¢ ; ¢-mnoti ; i- notc

AS(PE) consists of{i} plus 16 answer sets, corresponding to all combinationseof th
4 answer sets ialS(¥).

Now we are able to generalize the encodings for brave, azjtend definite con-
sequences. These definitions are direct extensions of bafi®i3, 4, and 5, the dif-
ferences are only due to the non-ground annotations. licpkat, the diagonalization
atomsa® should now be written ad (X1, ..., Xo(p), X1, - - -, Xa(p)) Which represent
the set of ground instances pfX,, ..., X, ), €ach annotated by itself. So, a weak
constraint:~ db(Xy, ..., Xo(p), X1, -+ Xap)) gives rise to{:~ db(ci, ..., ca(p),
Cly--5Ca(p)) | €1,-- -5 Capy € U} whereU is the Herbrand base of the program in
question, that is one weak constraint for each ground instannotated by itself.

Definition 8. Given a strong progran® and a setS of predicate symbols, let

P =P uU{i~mnot A, | g€ SYU{i~ i}

P =Pl U{i~A,; Ay-ilqgeSTu{i~i}

Pi =Py U{i~v Ay 5 Ig-is i~ Ig| g€ SPU{i~v i}
WhGFEAq = dZ(Xl, R 7on(q)»X1a R 7on(q)) anqu = iq(Xl, A ,Xa(q)).
Proposition 5. Given a strong progran® and a setS of predicates, for an arbitrary
A € AS(P&), (resp.,A € AS(PS), A € AS(PZ)), the set{p(ci,...,cCa(p)) |
db(crs- -+ Cagp)s €1y ,ca(_p)) e_A} is the set of brave (resp., cautious, definite) con-
sequences aP with a predicate inS.

Example 7.Consider agai® andS = {p} from Example 6. We obtain

W =W U {:~not d)(X1, X1) ; i~ i}



and we can check thatS(¥5%°) consists of the sets

RuU{db(a,a),db(b,b),d?(a,b),d?(b,a)},
Ru{db(a,a),db(b,b),db(a,b),db (b, a)},
RU{dp(a,a),db(b,b),db(a,b),db(b,a)},
RU{d}(a,a),d}(b,b),d5(b, a),d5(b, a)};

whereR = {d?(a, a),d?(a,b),d?(b,a),d?(b,b)}. For eachA of these answer sets we
obtain{p(t) | db(t,t) € A} = {p(a),p(b)} which corresponds exactly to the brave
consequences @ with a predicate of = {p}.

For cautious consequences, we have

ch:y'/gju{;w dg(leXl) ; dg(Xl,Xl):-i -~ Z}

and we can check thatS(¥¢°) consists of the sets

RuU{d¥(a,a),d?(b,b),d?(a,b),d?(b,a)},
RuU{d?(a,a),d?(b,b),db(a,b),d?(b,a)},
RU {df;(ma), db(b,0),db(a, b),db(b, a)},
RU {dqu(a,a), d’q’(b, b), dg(b, a),dg(b, a)};

whereR = {d?(a,a),d?(a,b),d?(b,a),d?(b,b)}, as above. For eacH of these an-
swer sets we obtaifp(t) | db(t,t) € A} = () and indeed there are no cautious conse-
quences o with a predicate of = {p}.

Finally, for definite consequences,

W = 0§ Ui~ dB(X0, X)) 5 ip(Xa) i v (X)) v i)

It is easy to see thatlS(¥d®) = AS(¥E) and so{p(t) | di(t,t) € A} = () for
each answer set of ¥Z¢, and indeed there is also no definite consequendewith a
predicate ofS = {p}.

These definitions exploit the fact that the semantics of gimund programs is de-
fined via their grounding with respect to their Herbrand énée. So the fresh variables
introduced in the manifold will give rise to one copy of a rébe each ground atom.

In practice, ASP systems usually require rules to be sad¢ igshthat each variable
occurs (also) in the positive body. The manifold for a set refdicates may therefore
contain unsafe rules (because of the fresh variables) Hiutan be repaired by adding
a domain atomdom, (X3, ...,X,,) to a rule which is to be annotated with This
predicate can in turn be defined by a rdlen, (X, ..., X,,) - w(X1),...,u(Xm)
whereuw is defined usindu(c) | ¢ € Up}. One can also provide smarter definitions for
dom, by using a relaxation of the definition for

We also observe that ground atoms that are contained in alemsets of a pro-
gram need not be annotated in the manifold. Note that thesesaentially the cautious
consequences of a program and therefore determining dlbsttautomatically before
rewriting does not make sense. But for some atoms this popan be determined



by a simple analysis of the structure of the program. Forimsg, facts will be in all

answer sets. In the sequel we will not annotate extensidoaisa(those defined only
by facts) in order to obtain more concise programs. One calslalgo further and omit
the annotation of atoms which are defined using non-disijmstratified programs.

As an example, we present an ASP encoding for boolean shiiisfiand then cre-
ate its manifold program for resolving the following protleGiven a propositional
formula in CNF, compute all atoms which are true in all modelssofWe provide a
fixed program which takes a representatiorpas facts as input. To apply our method
we first require a program whose answer sets are in a oneetecarnespondence to the
models ofp. To start with, we fix the representation of CNFs. lefover atomsA) be
of the formA_, ¢;. Then,D, = {at(a) | a € A} U{cl(i) | 1 <i < n}U{pos(a,i) |
atoma occurs positively ire; } U {neg(a, ) | atoma occurs negatively im; }. We con-
struct progranB AT as the set of the following rules.

t(X) = not f(X),at(X);  f(X) = not t(X),at(X);
ok(C) = t(X),pos(C,X); ok(C) = f(X),neg(C, X);
- not ok(C),cl(C).

It can be checked that the answer setSAT U D, are in a one-to-one correspondence
to the models (oveHrl) of . In particular, for any model C A of ¢ there exists an
answer sefl/ of SAT U D,, such thatl = {a | t(a) € M}. We now consideBAT{j,
which consists of the following rules.

di(X,Y) = ¢,not dp(X,Y),at(X); df(X,Y) = ¢,not dj(X,Y),at(X);
dt, (C)Y) = ¢,di(X,Y),pos(C, X); df)k( JY) = ¢ df(X Y),neg(C, X);
= ¢notdf, (CY),c(C);  di(X,X) -
c - not ; - notc
i~ dE(X, X); i~ .

Given Proposition 5, it is easy to see that, given some ansetet of SAT{t} U Dy,
{a | di(a,a) € A} is precisely the set of atoms which are true in all modelg.of

5 Applications

In this section, we put our technique to work and show how &omsta-reasoning over
answer sets for three application scenarios. The first oaevisll-known problem from
propositional logic, and we will reuse the example from abdvhe second example
takes a bit more background, but presents a novel methodhtpute ideal extensions
for argumentation frameworks which was also implementeténlogic-programming
based argumentation system ASPARTIX [23inally, we address Michael Gelfond’s
epistemic specification, a powerful extension of standa®& Avith modal atoms which
allow for meta-reasoning over answer sets. In particular,will consider a certain
subclass which is directly amenable to manifolds.

5 For aweb frontend, s¢et t p: // rul | . dbai . t uwi en. ac. at : 8080/ ASPARTI X.



5.1 The Unigue Minimal Model Problem

As a first example, we show how to encode the problem of degidinether a given
propositional formulap has a unique minimal model. This problem is known to be
in ©F and to beco-NP-hard (the exact complexity is an open problem). Ldte the
intersection of all models op. Theny has a unique minimal model iff is also a
model ofp. We thus use our example from the previous section, and déngrogram
UNIQUE asSAT{}, augmented by rules

ok(C) = di{(X, X),pos(C, X);
ok(C) = not dY(X, X),neg(C, X);
= not ok(C), cl(C).

We immediately obtain the following result.

Theorem 1. For any CNF formulayp, it holds thaty has a unique minimal model, if
and only if programUNIQUE U D,, has at least one answer set.

A slight adaption of this encoding allows us to formalize C\Mfasoning [13] over
a propositional knowledge bage since the atoms in ¢, for which the corresponding
atomsdj(a, a) are not contained in an answer setS#fT{;, U D,,, are exactly those
which are added negated¢ofor CWA-reasoning.

5.2 Computing the Ideal Extension

Our second example is from the area of argumentation, whergroblem of computing
the ideal extension [15] of an abstract argumentation freonle was recently shown
to be complete foFPﬂIP in [24]. Thus, this task cannot be compactly encoded via
normal programs (under usual complexity theoretic assiomgt On the other hand,
the complexity shows that employing disjunction is not rssey, if one instead uses

weak constraints. We first give the basic definitions follogvi25].

Definition 9. An argumentation framework (AR} a pair I = (A, R) whereA C U
is a set of arguments anl C A x A. (a,b) € R means that attacksb. An argument
a € Aisdefendedy S C A (in F) if, for eachb € A such that(b, a) € R, there exists
ac € S, such thatc,b) € R. An argument: is admissible (inf’) w.r.t. a setS C A if
eachb € A which attacks: is defended by.

Semantics for argumentation frameworks are given in tefrase-galled extensions.
The next definitions introduce two such notions which alsdaute the concept of an
ideal extension.

Definition 10. Let I = (A, R) be an AF. A se C A is said to beconflict-free (in
F), if there are naa, b € S, such that(a, b) € R. A setS is anadmissible extensioof
F, if Sis conflict-free inF" and eachuz € S is admissible inf" w.r.t. S. The collection
of admissible extensions is denoteddalyn(F). An admissible extensia$i of F' is a
preferred extensioaf F, if for eachT € adm(F), S ¢ T. The collection of preferred
extensions of’ is denoted byref (F').



The original definition of ideal extensions is as follows]15

Definition 11. Let F' be an AF. A sefS is calledideal for F', if S € adm(F') and
S C Nreprery T- A maximal (w.rt. set-inclusion) ideal set 6fis called anideal
extensiorof F.

It is known that each AF possesses a unique ideal extensig24], the following
algorithm to compute the ideal extension of an A= (A, R) is proposed. Let

Xp=A\ |J Sand
Seadm(F)
X}' ={ac A|Vb,c:(b,a),(a,c) e R=bce Xp}\ Xz,

and define the AR™* = (X} U X5, R*) where the attack relatio®* is given as
RN {(a,b),(b,a) | a € X{,b € X5 }. F* is a bipartite AF in the sense th&" is a
bipartite graph.

Proposition 6 ([24]). The ideal extension of AF is given by g , g, (7 (S N X).

The set of all admissible atoms for a bipartite AFcan be computed in polynomial
time using Algorithm 1 of [26]. This is basically a fixpoineitation identifying argu-
ments inX; that cannot be in an admissible extension: First, argunienty = X
are excluded, which are attacked by unattacked argumenhigshi{vare necessarily in
X 1), yielding X;. Now, arguments itk . may be unattacked b¥;, and all arguments
in X attacked by such newly unattacked arguments should beded:IThis process is
iterated until either no arguments are left or no more arguroan be excluded. There
may be at mostX ;| iterations in this process.

We exploit this technique to formulate an ASP-encodipizAL. We first describe a
program the answer sets of which characterize admissilbd@msions. Then, we use the
brave manifold of this program in order to determine all anguts contained in some
admissible extension. Finally, we extend this manifoldgpaon in order to identifyF™*
and to simulate Algorithm 1 of [26].

The argumentation frameworks will be givenlioEAL as sets of input facts. Given
an AFF = (A,R),letDp = {a(z) | x € A} U {r(z,y) | (z,y) € R}. The program
ADM, given by the rules below, computes admissible extensici§2(7, 23]):

in(X) - not out(X), a(X);
out(X) - not in(X), a(X);
= in(X),in(Y),r(X,Y);
def(X) = in(Y),r(Y, X);
- in(X),r(Y, X),not def(Y).

Indeed one can show that, given an AF the answer sets dADM U Dg are

in a one-to-one correspondence to the admissible extensiofi via thein(-) predi-

cate. In order to determine the brave consequenc@ddil for predicatein, we form
ADM??H}, and extend it by collecting all brave consequenceAloM U D in predi-

catein(-), from which we can determin& . (represented bjn~(-)), X} (represented
by in™(-), using auxiliary predicateot_in™ (-)), andR* (represented by(-, -)).



in(X) = din(X, X);
in"(X) - a(X),not in(X);
in*(X) = in(X),not not_in™(X);
not_in™(X) = in(Y),r(X,Y);
not_in™(X) = in(Y),r(Y, X);
a(X,Y) = r(X,Y),in"(X),in" (Y);
a(X,Y) = r(X,Y),in" (X),in"(Y).

In order to simulate Algorithm 1 of [26], we use the elementsi;: for marking
the iteration steps. To this end, we use an arbitrary orden ASP constants (all ASP
systems provide such a predefined order) and define succedimoum and supremum
among the constants representiig w.r.t. the order.

nsucc(X, Z) = inT(X),inT(Y),in"T(2),X <Y,Y < Z;
suce(X,Y) = inT(X),inT(Y), X < Y,not nsuce(X,Y);
ninf(Y) = in™(X),in"(Y), X < Y;
nsup(X) - in*(X),inT(Y),X <Y;
inf(X) - in*(X), not ninf(X);
sup(X) = in™(X), not nsup(X).

We now use this to iteratively determine arguments that atémthe ideal exten-
sion, usingnid(-, -), where the first argument is the iteration step. In the fiesation
(identified by the infimum) all arguments i, which are attacked by an unattacked
argument are collected. In subsequent iterations, allnaegs from the previous steps
are included and augmented by arguments that are attacleddrgument not attacked
by arguments inX ;- that were not yet excluded in the previous iteration. Final-
guments in the ideal extension are those that are not extlirde X in the final
iteration (identified by the supremum).

atto(X) - q(V, X);
att;(J,Z) = q(Y,Z),in"(Y),not nid(J,Y),in " (J);
ideal(X) = in™(X),sup(I),not nid(7, X);

nid(I,Y) - succ(J, I),nid(J,Y);

nid(7,Y) = inf(I),q(Z,Y),in" (Y),not atte(2);
nid(1,Y) = succ(J,1),q(Z,Y),in"(Y),not att;(J, Z).

If we putADM?m} and all of these additional rules together to form the progra
IDEAL, we obtain the following result:

Theorem 2. Let F' be an AF andd € AS(IDEAL U Dp). Then, the ideal extension of
Fis given by{a | ideal(a) € A}.



5.3 Epistemic Specifications

Epistemic Specificatiortgave been defined in [16], and are an extension of programs as
defined in Section 2 by the possible occurrence of epistepecatord< andM. In this
paper, we will consider a simple class of epistemic spetifina, which includes the
main motivating example of [16]

A simple epistemic literals one ofKa, =Ka, Ma or -Ma, wherea is an atom as
in Section 2. Asimple epistemic specificationa set of epistemic rules

ay V -+ Voa, - Bi,...,By, notbgy1,..., not b, (1)

wheren > 0,m > k > 0,n+m > 0, By,..., B, are atoms or simple epistemic
literals andaq, . . ., ay, bg11, - - - , by, @re atoms. We say that an atardirectly modally
depends on an ato#if « is one ofaq, . . ., a, andb occurs in a simple epistemic literal
of By,..., By in a rule of the form (1). A simple epistemic specificatiomisdally
acyclicif no atom depends modally on itself in the transitive clesoirthe direct modal
dependency relation. A specificationose-step modaf each atomu directly modally
depends only on atoms which do not depend modally on othersato

Herbrand Universe and Base are defined as for standard logiggms, consid-
ering also atoms in simple epistemic literals (but no mogedrators). In the context
of epistemic specifications, collections of interpretasi@re calledvorld views Satis-
faction of standard atoms by interpretations is defined aaluSatisfaction of simple
epistemic literals is defined with respect to world views: érid view IV satisfieKa,
written W = Ka, iff VB € W : a € B. W satisfiesMa, written W = Ma, iff
dB € W : a € B. Moreover,IW = —Ka iff W = Ka andW = —Ma iff W = Ma.

Themodal reducbf a simple epistemic specificatidih with respect to a world view
W, denotedlT", is obtained by deleting all epistemic rulesi@fof the form (1) where
W = B; for some simple epistemic literd®;, and by deleting all simple epistemic
literals of the remaining rules. Note thAt" is a standard program without epistemic
literals. W is a world view of I iff W = AS(IT™).

Observe that standard programs without weak constraiatgeistemic specifica-
tions, and their modal reduct is equal to the original progréhese programs therefore
have a single world view, the collection of the answer seti@fprogram.

A one-step modal epistemic specificatiincan be split into two specification$;
(the lower part) andI; (the upper part), wherel; N I1s = § andIl; U I1s = I, such
thatII; does not contailk or M, and no head atom df, occurs in/I;. This is similar
to, and in fact a special case of, splitting epistemic speatifins as defined in [28].

In order to be able to compute world views of one-step modistemic specifica-
tions by means of manifold programs, we would like them toehagingle world view.
The reason is that it is not clear how to differentiate betwaespecification having
multiple world views and a specification having a single woriew that contains all
sets of the multiple world views of the first specification €liesues are best explained
by an example.

5 Here we do not consider strong negation (except for negating epistgraiators) in order to
keep the framework simple. It can be extended without major effortctoporate also strong
negation.



Example 8.Consider the following one-step modal epistemic speciticat

- a,Kb;

= b, Ka;

= Ma, Mb;
aVb:- .

It has two world views{{a}} and {{b}}. It is not clear how to find a manifold
encoding for this specification which lets one differemtias output from a manifold
encoding of a specification having one world vi¢gu}, {b}} (for example the specifi-
cation consisting only of Vv b). The difficulty is that one would have to encode also an
indicator in which world view(s) an interpretation occundich appears to be a hard,
if not impossible, task.

The important observation in the example is that the uppergbahe specification
can trigger incoherences (in this case because of coristralations), and for this rea-
son not all answer sets of the lower part necessarily haveraspmnding answer set in
a world view of the complete specification. A similar issus baen described in [28],
where specifications are calledfeif (for the special case of one-step modal epistemic
specifications) the modal reduct of the upper part with resgmethe collection of an-
swer sets of the lower part has answer sets when any answef thet lower part is
added as a set of facts, that is if

VA € AS(IT,) : AS(IT5T) U A) 0.

For any safe one-step modal epistemic specificatioand one of its world views
W,any A € W extends anA’ € AS(I1;) and, vice versa, each’ € AS(II) is
contained in somel € W. Therefore, for any epistemic literalin 77 and any world
view W of I, we have that? = ¢ if and only if AS(I1,) |= ¢, and as a consequence
v = A5Uh) and sol = AS(IT45U1)) s unique.

Example 9.Consider the following variantZ¢ of the main motivating example of [16].

eligible(X) - highGPA(X);
eligible(X) = minority(X), fairGPA(X);
notEligible(X) - notFairGPA(X), notHighGPA(X);
interview(X) - —Keligible(X), "KnotFEligible(X).

This (and any extensions by facts) is a safe one-step mobapc specification:
The first three rules form the lower pdift; and the last rule forms the upper péaft.

Moreover, observe that due to the considerations abovéhédower partl7; of a
one-step modal epistemic specificatiin AS(II;) = Ma iff 11 =, a (AS(IL) E
-Ma iff II} B, a) and AS(ITh) | Ka iff II; =. a (AS(I1) = —Ka iff II; [~ a)
for epistemic literala, -Ma, Ka, -Ka in I1.

We can then use Proposition 5 in order to simulate the modkicted7" of the
unique world viewi? of I1. In particular,

W Mp(ty,... t,) iff d2(tr, ... 1, X) € AS(IT,Y),



(with X being a sequence of suitably chosen variables, cf. Sectiand}
W EKp(ty,...,tn) iff  dD(t1,... 1, X) € AS(I11}).

Moreover, we havdV = —Mp(t1, ..., t,) iff d2(t1,... t,, X) ¢ AS(IT1Y"), and
W = =Kp(te, ..., tn) iff db(t1,...,t0, X) & AS(Il1;°). Making sure that all7;,°
andHlff use distinct symbols, different also from thosel/in we can form the union
of all of these programs.

That means that we can replace each occurrendeptfs, ..., t,) in II by the
manifold atomd> (¢4, .. .,t,, X) (@nd—=Kp(ty,...,t,) by the corresponding default
negated atom, i.exot dj(t1,...,t,, X)) and addll;{;;; symmetrically, we can re-
place each occurrence dp(ty, ..., t,) by db(t1, ... t,, X) (@nd—Mp(ty, ..., t,)
by not db(ty, ..., t,, X)) and addI]l’ﬁ,}. Let us call the program obtained in this way
I1. IT can be split such thalth?;‘,} and 7, {;,, form the bottom prograndl;, and the

partial evaluation7’ of I7 with respect tadS(1T; ) coincides with/T" for the unique
world view W of I1. It follows that the restriction of each € AS(II) to the symbols
of IT isin W, and for eactd € W, anA’ € AS(II) exists, such that the restriction of
A’ to symbols inlT is A.

Example 10.Reconsider the main motivating examdl of [16] as reported in Ex-
ample 9.I79 is:

eligible(X) = highGPA(X);
eligible(X) = minority(X), fairGPA(X);
notEligible(X) - notFairGPA(X), notHighGPA(X);
. - . eligible notEligible .
interview(X) = not 75, (X, X), not g7 (X, X);
eligible . eligible A
deligible(X7 Xq) Cl7dhighGPA(X’ X1);
eligible . eligible eligible .
lde;ligible (X7 Xl) - 1, dminority (X7 X1)7 dfairGPAb(X’ X1)7
eligible . eligible eligible .
dnotEligible (X, Xl) - €1, dnotFairGPA (X7 Xl)’ dnotHighGPA (X7 Xl)’
eligible o 4.
deligible(le X1) = i
c1 - not iq;
11 - not cq;
. eligible A
S deligible(Xl’ Xl)’
i~
Eligible notEligible
ArtEuable (0 XY = ey, dPONERINE (X X)),
eligible y A1) - 2 Y highGPA »31)5
notEligible . notEligible notEligible .
deliggblle . (X7 Xl) - C2, dming;it%l <X7 Xl)’ dfairGEFZA bl<X7 X1)7
notEligible . notEligible notEligible .
dnotEligible (X7 Xl) - C2, dnotFairGPA (X7 Xl)’ dnotHighGPA (X7 Xl)’
notEligible .
dnotEligible (X17 Xl) - 125
Co - not 1s;
t9 = not co;
. notEligible )
S dnotEligible (Xl’ Xl)’

i~ 9.



This rewriting can be extended to safe modally acyclic epigt specifications es-
sentially by a repeated application, but special care meisaken of the involved weak
constraints.

6 Conclusion

In this paper, we provided a novel method to rewrite ASP @ogyin such a way that
reasoning over all answer sets of the original program cafolbreulated within the
same program. Our method exploits the well-known conceptask constraints. We
illustrated the impact of our method by encoding the prolsled(i) deciding whether
a propositional formula in CNF has a unique minimal modé&l,cemputing the ideal
extension of an argumentation framework. For (i) and (ijpkn complexity results
witness that our encodings are adequate in the sense tloa#m\SP encodings with-
out weak constraints or similar constructs are assumed ioféasible. As a final ap-
plication we considered (iii) epistemic specifications,endhwe used our concepts to
simulate the semantics of epistemic literals within a sngbrld view (thus we had
to restrict ourselves to a particular subclass of epistamécifications). Our encodings
provide evidence that the class of disjunctive (non-disfive) safe one-step modal
epistemic specifications is easier to evaluate§hresp.©?’) as the respective general
class of disjunctive (non-disjunctive) epistemic speaitfiens (which have been shown
to be hard for!” resp.XF in [21]).

Concerning related work, we remark that the manifold progfar cautious con-
sequences is closely related to the concept of data digpumsc[29] (this paper also
contains a detailed discussion about the complexity d#Ssand related classes for
functional problems). Concepts similar to manifold pragsahave also been studied
in the area of default logic, where a method for reasonindpiwia single extension
has been proposed [30]. That method uses set-variable$ wharacterize the set of
generating defaults of the original extensions. Howeusrhsan approach differs con-
siderably from ours as it encodes certain aspects of therdaméwvhich ours does not),
which puts it closer to meta-programming (cf. [31]).

As future work, we intend studying the use of alternativefgmential constructs in
place of weak constraints. Moreover, we are currently agiel a suitable language
for expressing reasoning with brave, cautious and defioits@quences, allowing also
for mixing different reasoning modes. This language sha@@d/e as a platform for
natural encodings of problems in complexity clasegs ©f', FP|", andFPﬁg. A
first step towards this direction has already been undertak§3?2]; such extensions
should also pave the way to simulate a broader class of episspecifications.
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