
Manifold Answer-Set Programs and Their Applications⋆

Wolfgang Faber1 and Stefan Woltran2

1 University of Calabria, Italy
wf@wfaber.com

2 Vienna University of Technology, Austria
woltran@dbai.tuwien.ac.at

Abstract. In answer-set programming (ASP), the main focus usually is on com-
puting answer sets which correspond to solutions to the problem represented by
a logic program. Simple reasoning over answer sets is sometimes supported by
ASP systems (usually in the form of computing brave or cautious consequences),
but slightly more involved reasoning problems require external postprocessing.
Generally speaking, it is often desirable to use (a subset of) brave or cautious
consequences of a programP1 as input to another programP2 in order to provide
the desired solutions to the problem to be solved. In practice, the evaluation of
the programP1 currently has to be decoupled from the evaluation ofP2 using
an intermediate step which collects the desired consequences ofP1 and provides
them as input toP2. In this work, we present a novel method for representing
such a procedure within asingle program, and thus within the realm of ASP
itself. Our technique relies on rewritingP1 into a so-calledmanifold program,
which allows for accessing all desired consequences ofP1 within a single an-
swer set. Then, this manifold program can be evaluated jointly withP2 avoiding
any intermediate computation step. For determining the consequences withinthe
manifold program we useweak constraints, which is strongly motivated by com-
plexity considerations. As applications, we present encodings for computing the
ideal extension of an abstract argumentation framework and for computing world
views of a particular class of epistemic specifications.

1 Introduction

In the last decade,Answer Set Programming(ASP) [1, 2], also known as A-Prolog [3,
4], has emerged as a declarative programming paradigm. ASP is well suited for mod-
elling and solving problems which involve common-sense reasoning, and has been fruit-
fully applied to a wide variety of applications including diagnosis (e.g. [5]), data inte-
gration (e.g. [6]), configuration (e.g. [7]), and many others. Moreover, the efficiency of
the latest tools for processing ASP programs (so-called ASPsolvers) reached a state
that makes them applicable for problems of practical importance [8]. The basic idea

⋆ This work was supported by the Vienna Science and Technology Fund (WWTF), grant ICT08-
028, and by M.I.U.R. within the Italia-Austria internazionalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni e tecniche di ottimizzazione” and the
PRIN project LoDeN. A preliminary version of this paper appeared in theProceedings of
the the 10th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2009), pp. 115–128, Springer LNAI 5753, 2009.

of ASP is to compute answer sets of a logic program from which the solutions of the
problem encoded by the program can be obtained.

However, frequently one is interested not only in the solutions per se, but rather in
reasoning tasks that have to take some or even all solutions into account. As an exam-
ple, consider the problem of database repair, in which a given database instance does
not satisfy some of the constraints imposed in the database.One can attempt to mod-
ify the data in order to obtain a consistent database by changing as little as possible.
This will in general yield multiple possibilities and can beencoded conveniently using
ASP (see, e.g., [9]). However, usually one is not interestedin the repairs themselves,
but in the data which is present inall repairs. For the ASP encoding, this means that
one is interested in the elements which occur in all answer sets; these are also known
ascautious consequences. Indeed, ASP systems provide special interfaces for comput-
ing cautious consequences by means of query answering. But sometimes one has to
do more, such as answering a complex query over the cautious consequences (not to
be confused with complex queries over answer sets). So far, ASP solvers provide no
support for such tasks. Instead, computations like this have to be done outside ASP
systems, which hampers usability and limits the potential of ASP.

In this work, we tackle this limitation by providing a technique, which transforms
an ASP programP into a manifold programMP which we use to identify all con-
sequences of a certain type (we consider here the well-knownconcepts of brave and
cautious consequence, but also definite consequence [10]) within a singleanswer set.
The main advantage of the manifold approach is that the resulting program can be ex-
tended by additional rules representing a query over the brave (or cautious, definite)
consequences of the original programP , thereby using ASP itself for this additional
reasoning. In order to identify the consequences, we useweak constraints[11], which
are supported by the ASP-solver DLV [12]. Weak constraints have been introduced to
prefer a certain subset of answer sets via penalization. Their use for computing conse-
quences is justified by a complexity-theoretic argument: One can show that computing

consequences is complete for the complexity classesFPNP
|| or FPΣP

2

|| (depending on
the presence of disjunction), for which also computing answer sets for programs with
weak constraints is complete3, which means that an equivalent compact ASP program
without these extra constructs does not exist, unless the polynomial hierarchy collapses.
In principle, other preferential constructs similar to weak constraints could be used as
well for our purposes, as long as they meet these complexity requirements.

We discuss three particular applications of the manifold approach. First, we spec-
ify an encoding which decides the SAT-relatedunique minimal model problem, which
is closely related to closed-world reasoning [13]. The second problem stems from the
area of argumentation (cf. [14] for an overview) and concerns the computation of the
ideal extension [15] of an argumentation framework. For both problems we make use of
manifold programs of well-known encodings (computing all models of a CNF-formula

3 The first of these results is fairly easy to see, for the second, it was shown [11] that the related

decision problem is complete for the classΘP

2 or ΘP

3 , from which theFPNP

|| andFP
Σ

P

2

||

results can be obtained. Also note that frequently cited NP,Σ
P

2 , and co-NP,ΠP

2 completeness
results hold for brave and cautious query answering, respectively, but not for computing brave
and cautious consequences.

for the former application, computing all admissible extensions of an argumentation
framework for the latter) in order to compute consequences.Extensions by a few more
rules then directly provide the desired solutions, requiring little effort in total. As a final
application, we consider an encoding for (a certain subclass of) epistemic specifications
as introduced by Gelfond [16]. In a nutshell, these specifications are extensions of ASP
programs, which may include modal atoms to allow for reasoning over answer-sets
within the object language, and thus are closely related to some of the ideas we present
here. Epistemic specifications (already introduced in 1991[17]) have received increas-
ing interest only over the last years (see, e.g. [18–21]) butnowadays get more and more
recognized as an highly expressive and important extensionof standard answer-set pro-
gramming.

Organization and Main Results.After introducing the necessary background in the
next section, we

– introduce in Section 3 the concept of a manifold program for rewriting proposi-
tional programs in such a way that all brave (resp. cautious,definite) consequences
of the original program are collected into a single answer set;

– lift the results to the non-ground case (Section 4); and
– present applications for our technique in Section 5. In particular, we provide ASP

encodings for computing the ideal extension of an argumentation framework and
for computing world views of a particular class of epistemicspecifications.

The paper concludes with a brief discussion of related and further work.

2 Preliminaries

In this section, we review the basic syntax and semantics of ASP with weak constraints,
following [12], to which we refer for a more detailed definition.

An atomis an expressionp(t1, . . .,tn), wherep is apredicateof arityα(p) = n ≥ 0
and eachti is either a variable or a constant. Aliteral4 is either an atoma or its negation
not a.

A (disjunctive) ruler is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n+m > 0, and wherea1, . . . , an, b1, . . . , bm are atoms.
Theheadof r is the setH(r) = {a1, . . . , an}, and thebodyof r is the setB(r) =

{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,B+(r) = {b1, . . . , bk} andB−(r) =
{bk+1, . . . , bm}. We will sometimes denote a ruler asH(r) :-B(r).

A weak constraint[11] is an expressionwc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

4 For keeping the framework simple, we do not consider strong negation inthis paper. However,
the formalism can easily be adapted to deal with them.

wherem ≥ k ≥ 0 andb1, . . . , bm are literals, whileweight(wc) = w (the weight)
andl (the level) are positive integer constants or variables. For convenience,w and/or
l may be omitted and are set to 1 in this case. The setsB(wc), B+(wc), andB−(wc)
are defined as for rules. We will sometimes denote a weak constraintwc as:∼ B(wc).

A programP is a finite set of rules and weak constraints. We will often usesemi-
colons for separating rules and weak constraints in order toavoid ambiguities. With
Rules(P) we denote the set of rules inP andWC(P) denotes the set of weak con-
straints inP . wP

max and lPmax denote the maximum weight and maximum level over
WC(P), respectively. A program (rule, atom) ispropositionalor ground if it does not
contain variables. A program is calledstrongif WC(P) = ∅, andweakotherwise.

For any programP , letUP be the set of all constants appearing inP (if no constant
appears inP , an arbitrary constant is added toUP); let BP be the set of all ground
literals constructible from the predicate symbols appearing in P and the constants of
UP ; and letGround(P) be the set of rules and weak constraints obtained by applying,
to each rule and weak constraint inP all possible substitutions from the variables in
P to elements ofUP . UP is usually called theHerbrand Universeof P andBP the
Herbrand Baseof P .

A ground ruler is satisfiedby a setI of ground atoms iffH(r) ∩ I 6= ∅ whenever
B+(r) ⊆ I andB−(r) ∩ I = ∅. I satisfies a ground programP , if eachr ∈ P is
satisfied byI. For non-groundP , I satisfiesP iff I satisfiesRules(Ground(P)). A
ground weak constraintwc is violatedby I, iff B+(wc) ⊆ I andB−(wc)∩ I = ∅; it is
satisfied otherwise.

Following [22], a setI ⊆ BP of atoms is ananswer setfor a strong programP iff
it is a subset-minimal set that satisfies thereduct

P I = {H(r) :-B+(r) | I ∩B−(r) = ∅, r ∈ Ground(P)}.

A set of atomsI ⊆ BP is ananswer setfor a weak programP iff I is an answer set
of Rules(P) andHGround(P)(I) is minimal among all the answer sets ofRules(P),
where the penalization functionHP (I) for weak constraint violation of a ground pro-
gramP is defined as follows:

HP (I) =
∑lP

max

i=1

(

fP (i) ·
∑

w∈NP

i
(I) weight(w)

)

fP (1) = 1, and
fP (n) = fP (n− 1) · |WC(P)| · wP

max + 1 for n > 1.

whereNP
i (I) denotes the set of weak constraints ofP in level i violated byI. For

any programP , we denote the set of its answer sets byAS(P). In this paper, we use
only weak constraints with weight and level 1, for whichHGround(P)(I) amounts to
the number of weak constraints violated inI.

A ground atoma is a brave (sometimes also called credulous or possible) conse-
quence of a programP , denotedP |=b a, if a ∈ A holds for at least oneA ∈ AS(P).
A ground atoma is acautious(sometimes also called skeptical or certain) consequence
of a programP , denotedP |=c a, if a ∈ A holds for allA ∈ AS(P). A ground atoma
is adefiniteconsequence [10] of a programP , denotedP |=d a, if a is a cautious con-
sequence ofP andAS(P) 6= ∅. The sets of all brave, cautious, definite consequences
of a programP are denoted asBC(P), CC(P), DC(P), respectively.

3 Propositional Manifold Programs

In this section, we present a translation which essentiallycreates a copy of a given
strong propositional program for each of (resp. for a subsetof) its atoms. Thus, we
require several copies of the alphabet used by the given program.

Definition 1. Given a setI of literals, a collectionI of sets of literals, and an atoma,
defineIa = {pa | atomp ∈ I} ∪ {not pa | not p ∈ I} andIa = {Ia | I ∈ I}.

The actual transformation to a manifold is given in the next definition. We copy a
given programP for each atoma in a given setS, whereby the transformation guaran-
tees the existence of an answer set by enabling the copies conditionally.

Definition 2. For a strong propositional programP andS ⊆ BP , define itsmanifold
(w.r.t.S) as

P tr
S =

⋃

r∈P

{H(r)a :- {c} ∪B(r)a | a ∈ S} ∪ {c :- not i ; i :- not c}.

We assumeBP ∩BP tr

S

= ∅, that is, all symbols inP tr
S are assumed to be fresh.

Example 1.Consider
Φ = {p ∨ q :- ; r :- p ; r :- q}

for which we haveAS(Φ) = {{p, r}, {q, r}}, and thusBC(Φ) = {p, q, r} and
CC(Φ) = DC(Φ) = {r}. When forming the manifold forBΦ = {p, q, r}, we ob-
tain

Φtr
BΦ

=







pp ∨ qp :- c ; rp :- c, pp ; rp :- c, qp ; c :- not i ;
pq ∨ qq :- c ; rq :- c, pq ; rq :- c, qq ; i :- not c ;
pr ∨ qr :- c ; rr :- c, pr ; rr :- c, qr







Note that given a strong programP andS ⊆ BP , the construction ofP tr
S can be

done in polynomial time (w.r.t. the size ofP). The answer sets of the transformed pro-
gram consist of all combinations (of size|S|) of answer sets of the original program
(augmented byc) plus the special answer set{i} which we shall use to indicate incon-
sistency ofP .

Proposition 1. For a strong propositional programP and a setS ⊆ BP , AS(P tr
S) =

A ∪ {{i}}, where

A = {

|S|
⋃

i=1

Ai ∪ {c} | 〈A1, . . . , A|S|〉 ∈
∏

a∈S

AS(P)a}.

Note that
∏

denotes the Cartesian product in Proposition 1.

Example 2.ForΦ of Example 1, we obtain thatAS(Φtr
BΦ

) consists of{i} plus (copies
of {q, r} are underlined for readability)

{c, pp, rp, pq, rq, pr, rr}, {c, qp, rp, qq, rq, qr, rr},
{c, qp, rp, pq, rq, pr, rr}, {c, pp, rp, qq, rq, pr, rr}, {c, pp, rp, pq, rq, qr, rr},
{c, qp, rp, qq, rq, pr, rr}, {c, qp, rp, pq, rq, qr, rr}, {c, pp, rp, qq, rq, qr, rr}.

Using this transformation, each answer set encodes an association of an atom with
some answer set of the original program. If an atoma is a brave consequence of the
original program, then a witnessing answer set exists, which contains the atomaa. The
idea is now to prefer those atom-answer set associations where the answer set is a
witness. We do this by means of weak constraints and penalizeeach association where
the atom is not in the associated answer set, that is, whereaa is not in the answer set
of the transformed program. Doing this for each atom means that an optimal answer set
will not containaa only if there is no answer set of the original program that contains
a, so eachaa contained in an optimal answer set is a brave consequence of the original
program.

Definition 3. Given a strong propositional programP andS ⊆ BP , let

P bc
S = P tr

S ∪ {:∼ not aa | a ∈ S} ∪ {:∼ i}

Observe that all weak constraints are violated in the special answer set{i}, while in
the answer set{c} (which occurs if the original program has an empty answer set) all
but :∼ i are violated.

Proposition 2. Given a strong propositional programP andS ⊆ BP , for anyA ∈
AS(P bc

S), {a | aa ∈ A} = BC(P) ∩ S.

This result would also hold without including:∼ i in P bc
S . It has been included

for clarity and for making the encoding more uniform with respect to the encoding for
definite consequences, which will be presented below.

Example 3.For the programΦ as given Example 1,

Φbc
BΦ

= Φtr
BΦ

∪ {:∼ not pp ; :∼ not qq ; :∼ not rr ; :∼ i}.

We obtain thatAS(Φbc
BΦ

) = {A1, A2}, where

A1 = {c, pp, rp, qq, rq, pr, rr};

A2 = {c, pp, rp, qq, rq, qr, rr},

as these two answer sets are the only ones that violate no weakconstraint. We can
observe that{a | aa ∈ A1} = {a | aa ∈ A2} = {p, q, r} = BC(Φ).

Concerning cautious consequences, we first observe that if aprogram is inconsistent
(in the sense that it does not have any answer set), each atom is a cautious consequence.
But if P is inconsistent, thenP tr

S will have only{i} as an answer set, so we will need
to find a suitable modification in order to deal with this in thecorrect way. In fact, we
can use a similar approach as for brave consequences, but penalize those associations
where an atom is contained in its associated answer set. Any optimal answer set will
thus containaa for an atom only ifa is contained in each answer set. If an answer
set containingi exists, it is augmented by all atomsaa, which also causes all weak
constraints to be violated.

Definition 4. Given a strong propositional programP andS ⊆ BP , let

P cc
S = P tr

S ∪ {:∼ aa | a ∈ S} ∪ {aa :- i | a ∈ S} ∪ {:∼ i}

Proposition 3. Given a strong propositional programP andS ⊆ BP , for anyA ∈
AS(P cc

S), {a | aa ∈ A} = CC(P) ∩ S.

Similar toP bc
S , this result also holds without including:∼ i.

Example 4.Recall programΦ from Example 1. We have

Φcc
BΦ

= Φtr
BΦ

∪ {:∼ pp ; :∼ qq ; :∼ rr ; pp :- i ; qq :- i ; rr :- i ; :∼ i}.

We obtain thatAS(Φcc
BΦ

) = {A3, A4}, where

A3 = {c, qp, rp, pq, rq, pr, rr};

A4 = {c, qp, rp, pq, rq, qr, rr},

as these two answer sets are the only ones that violate only one weak constraint, namely
:∼ rr. We observe that{a | aa ∈ A3} = {a | aa ∈ A4} = {r} = CC(Φ).

We next consider the notion of definite consequences. Different to cautious conse-
quences, we do not add the annotated atoms to the answer set containingi. However,
this answer set should never be among the optimal ones unlessit is the only one. There-
fore we inflate it by new atomsia, all of which incur a penalty. This guarantees that this
answer set will incur a higher penalty (|BP |+ 1) than any other (≤ |BP |).

Definition 5. Given a strong propositional programP andS ⊆ BP , let

P dc
S = P tr

S ∪ {:∼ aa; ia :- i; :∼ ia | a ∈ S} ∪ {:∼ i}

Proposition 4. Given a strong propositional programP andS ⊆ BP , for anyA ∈
AS(P dc

S), {a | aa ∈ A} = DC(P) ∩ S.

Example 5.Recall programΦ from Example 1. We have

Φdc
BΦ

= Φtr
BΦ

∪ {:∼ pp ; :∼ qq ; :∼ rr ;

ip :- i ; iq :- i ; ir :- i ; :∼ ip ; :∼ iq ; :∼ ir ; :∼ i}.

As in Example 4,A3 andA4 are the only ones that violate only one weak constraint,
namely:∼ rr, and thus are the answer sets ofΦdc

BΦ
.

Obviously, one can compute all brave, cautious, or definite consequences of a pro-
gram by choosingS = BP . We also note that the programs from Definitions 3, 4 and
5 yield multiple answer sets. However each of these yields the same atomsaa, so it is
sufficient to compute one of these. The programs could be extended in order to admit
only one answer set by suitably penalizing all atomsab (a 6= b). To avoid interference
with the weak constraints already used, these additional weak constraints would have
to pertain to a different level.

4 Non-Ground Manifold Programs

We now generalize the techniques introduced in Section 3 to non-ground strong pro-
grams. The first step in Section 3 was to define the notion of annotation. There, we
annotated propositional atoms with propositional atoms. Also in the non-ground case,
we want to annotate atoms with atoms in some way, but it is not immediately clear what
kind of atoms should be used for annotations — ground atoms ornon-ground atoms?

The first thought would be to annotate using ground atoms, since after all the goal
is to produce a copy of the program for each possible ground consequence. This would
amount mean annotating each predicate (and thus also each atom) with ground atoms of
some subset of the Herbrand Base. For example, annotating the rulep(X,Y) :- q(X,Y)
with the set{r(a), r(b)} would yield the annotated rulespr(a)(X,Y) :- qr(a)(X,Y)
andpr(b)(X,Y) :- qr(b)(X,Y). The tacit assumption here is thatr(a) andr(b) are the
only two ground instances of predicater which are of interest.

Since we want to keep our description as general as possible,we assume anno-
tation using the full Herbrand Base. In this scenario it makes sense to annotate with
non-ground atoms, in order to ease readability and reduce the size of the (non-ground)
manifold program. In particular, the arguments of these non-ground atoms should be
mutually different variables, in order to represent all possible ground instances of the
atom. The idea is that we can then use the standard grounding definition also on the
annotations.

In the example given earlier, we would annotate usingr(Z). In order to be able
to fall back on the regular grounding defined for non-annotated programs, we will
annotate using only the predicater and extend the arguments ofp, yielding the rule
drp(X,Y, Z) :- drq(X,Y, Z) (we use predicate symbolsdrp anddrq rather thanpr andqr

just for pointing out the difference between annotation by predicates versus annotation
by ground atoms).

This notation is quite general, as it can restrict the annotations to ground atoms
of special interest by adding appropriate atoms to the rule body. In our example, this
amounts to writingpr(X,Y, Z) :- qr(X,Y, Z), rdom(Z) where the predicaterdom
identifies the instances ofr for which annotations should be produced. In the following,
recall thatα(p) denotes the arity of a predicatep.

Definition 6. Given an atoma = p(t1, . . . , tn) and a predicateq, let atrq be the atom
dqp(t1, . . . , tn, X1, . . . , Xα(q)) whereX1, . . . , Xα(q) are fresh variables anddqp is a new
predicate symbol withα(dqp) = α(p)+α(q). Furthermore, given a setL of literals, and
a predicateq, letLtr

q be{atrq | atoma ∈ L} ∪ {not atrq | not a ∈ L}.

Note that we assume that even though the variablesX1, . . . , Xα(q) are fresh, they
will be the same for each occurrence ofatrq . We define the manifold program in analogy
to Definition 2, the only difference being the different way of annotating.

Definition 7. Given a strong programP and a setS of predicates, define itsmanifold
as

P tr
S =

⋃

r∈P

{H(r)trq :- {c} ∪B(r)trq | q ∈ S} ∪ {c :- not i ; i :-not c}.

Example 6.Consider program

Ψ = {p(X) ∨ q(X) :- r(X) ; r(a) :- ; r(b) :- }

for which

AS(Ψ) =
{

{p(a), p(b), r(a), r(b)},

{p(a), q(b), r(a), r(b)},

{q(a), p(b), r(a), r(b)},

{q(a), q(b), r(a), r(b)}
}

.

Hence, we haveBC(Ψ) = {p(a), p(b), q(a), q(b), r(a), r(b)} and moreoverCC(Ψ) =
DC(Ψ) = {r(a), r(b)}. Forming the manifold forS = {p}, we obtain

Ψ tr
S =

{

dpp(X,X1) ∨ dpq(X,X1) :- dpr(X,X1), c ;

dpr(a,X1) :- c ; dpr(b,X1) :- c ; c :-not i ; i :- not c

}

AS(Ψ tr
S) consists of{i} plus 16 answer sets, corresponding to all combinations of the

4 answer sets inAS(Ψ).

Now we are able to generalize the encodings for brave, cautious, and definite con-
sequences. These definitions are direct extensions of Definitions 3, 4, and 5, the dif-
ferences are only due to the non-ground annotations. In particular, the diagonalization
atomsaa should now be written asdpp(X1, . . . , Xα(p), X1, . . . , Xα(p)) which represent
the set of ground instances ofp(X1, . . . , Xα(p)), each annotated by itself. So, a weak
constraint:∼ dpp(X1, . . . , Xα(p), X1, . . . , Xα(p)) gives rise to{:∼ dpp(c1, . . . , cα(p),
c1, . . . , cα(p)) | c1, . . . , cα(p) ∈ U} whereU is the Herbrand base of the program in
question, that is one weak constraint for each ground instance annotated by itself.

Definition 8. Given a strong programP and a setS of predicate symbols, let

P bc
S = P tr

S ∪ {:∼ not ∆q | q ∈ S} ∪ {:∼ i}

P cc
S = P tr

S ∪ {:∼ ∆q ; ∆q :- i | q ∈ S} ∪ {:∼ i}

P dc
S = P tr

S ∪ {:∼ ∆q ; Iq :- i ; :∼ Iq | q ∈ S} ∪ {:∼ i}

where∆q = dqq(X1, . . . , Xα(q), X1, . . . , Xα(q)) andIq = iq(X1, . . . , Xα(q)).

Proposition 5. Given a strong programP and a setS of predicates, for an arbitrary
A ∈ AS(P bc

S), (resp.,A ∈ AS(P cc
S), A ∈ AS(P dc

S)), the set{p(c1, . . . , cα(p)) |
dpp(c1, . . . , cα(p), c1, . . . , cα(p)) ∈ A} is the set of brave (resp., cautious, definite) con-
sequences ofP with a predicate inS.

Example 7.Consider againΨ andS = {p} from Example 6. We obtain

Ψ bc
S = Ψ tr

S ∪ {:∼ not dpp(X1, X1) ; :∼ i}

and we can check thatAS(Ψ bc
S) consists of the sets

R ∪ {dpp(a, a), d
p
p(b, b), d

p
q(a, b), d

p
q(b, a)},

R ∪ {dpp(a, a), d
p
p(b, b), d

p
p(a, b), d

p
q(b, a)},

R ∪ {dpp(a, a), d
p
p(b, b), d

p
q(a, b), d

p
p(b, a)},

R ∪ {dpp(a, a), d
p
p(b, b), d

p
p(b, a), d

p
p(b, a)};

whereR = {dpr(a, a), d
p
r(a, b), d

p
r(b, a), d

p
r(b, b)}. For eachA of these answer sets we

obtain{p(t) | dpp(t, t) ∈ A} = {p(a), p(b)} which corresponds exactly to the brave
consequences ofΨ with a predicate ofS = {p}.

For cautious consequences, we have

Ψ cc
S = Ψ tr

S ∪ {:∼ dpp(X1, X1) ; dpp(X1, X1) :- i ; :∼ i}

and we can check thatAS(Ψ cc
S) consists of the sets

R ∪ {dpq(a, a), d
p
q(b, b), d

p
q(a, b), d

p
q(b, a)},

R ∪ {dpq(a, a), d
p
q(b, b), d

p
p(a, b), d

p
q(b, a)},

R ∪ {dpq(a, a), d
p
q(b, b), d

p
q(a, b), d

p
p(b, a)},

R ∪ {dpq(a, a), d
p
q(b, b), d

p
p(b, a), d

p
p(b, a)};

whereR = {dpr(a, a), d
p
r(a, b), d

p
r(b, a), d

p
r(b, b)}, as above. For eachA of these an-

swer sets we obtain{p(t) | dpp(t, t) ∈ A} = ∅ and indeed there are no cautious conse-
quences ofΨ with a predicate ofS = {p}.

Finally, for definite consequences,

Ψdc
S = Ψ tr

S ∪ {:∼ dpp(X1, X1) ; ip(X1) :- i ; :∼ ip(X1) ; :∼ i}.

It is easy to see thatAS(Ψdc
S) = AS(Ψ cc

S) and so{p(t) | dpp(t, t) ∈ A} = ∅ for
each answer setA of Ψdc

S , and indeed there is also no definite consequence ofΨ with a
predicate ofS = {p}.

These definitions exploit the fact that the semantics of non-ground programs is de-
fined via their grounding with respect to their Herbrand Universe. So the fresh variables
introduced in the manifold will give rise to one copy of a rulefor each ground atom.

In practice, ASP systems usually require rules to be safe, that is, that each variable
occurs (also) in the positive body. The manifold for a set of predicates may therefore
contain unsafe rules (because of the fresh variables). But this can be repaired by adding
a domain atomdomq(X1, . . . , Xm) to a rule which is to be annotated withq. This
predicate can in turn be defined by a ruledomq(X1, . . . , Xm) :-u(X1), . . . , u(Xm)
whereu is defined using{u(c) | c ∈ UP }. One can also provide smarter definitions for
domq by using a relaxation of the definition forq.

We also observe that ground atoms that are contained in all answer sets of a pro-
gram need not be annotated in the manifold. Note that these are essentially the cautious
consequences of a program and therefore determining all of those automatically before
rewriting does not make sense. But for some atoms this property can be determined

by a simple analysis of the structure of the program. For instance, facts will be in all
answer sets. In the sequel we will not annotate extensional atoms (those defined only
by facts) in order to obtain more concise programs. One couldalso go further and omit
the annotation of atoms which are defined using non-disjunctive stratified programs.

As an example, we present an ASP encoding for boolean satisfiability and then cre-
ate its manifold program for resolving the following problem: Given a propositional
formula in CNFϕ, compute all atoms which are true in all models ofϕ. We provide a
fixed program which takes a representation ofϕ as facts as input. To apply our method
we first require a program whose answer sets are in a one-to-one correspondence to the
models ofϕ. To start with, we fix the representation of CNFs. Letϕ (over atomsA) be
of the form

∧n
i=1 ci. Then,Dϕ = {at(a) | a ∈ A} ∪ {cl(i) | 1 ≤ i ≤ n} ∪ {pos(a, i) |

atoma occurs positively inci} ∪ {neg(a, i) | atoma occurs negatively inci}. We con-
struct programSAT as the set of the following rules.

t(X) :- not f (X), at(X); f (X) :- not t(X), at(X);

ok(C) :- t(X), pos(C,X); ok(C) :- f (X), neg(C,X);

:- not ok(C), cl(C).

It can be checked that the answer sets ofSAT∪Dϕ are in a one-to-one correspondence
to the models (overA) of ϕ. In particular, for any modelI ⊆ A of ϕ there exists an
answer setM of SAT ∪Dϕ such thatI = {a | t(a) ∈ M}. We now considerSATcc

{t}

which consists of the following rules.

dtt(X,Y) :- c, not dtf (X,Y), at(X); dtf (X,Y) :- c, not dtt(X,Y), at(X);

dtok (C, Y) :- c, dtt (X,Y), pos(C,X); dtok (C, Y) :- c, dtf (X,Y), neg(C,X);

:- c, not dtok (C, Y), cl(C); dtt(X,X) :- i ;

c :- not i; i :- not c;

:∼ dtt(X,X); :∼ i.

Given Proposition 5, it is easy to see that, given some answersetA of SATcc
{t} ∪ Dϕ,

{a | dtt(a, a) ∈ A} is precisely the set of atoms which are true in all models ofϕ.

5 Applications

In this section, we put our technique to work and show how to use meta-reasoning over
answer sets for three application scenarios. The first one isa well-known problem from
propositional logic, and we will reuse the example from above. The second example
takes a bit more background, but presents a novel method to compute ideal extensions
for argumentation frameworks which was also implemented inthe logic-programming
based argumentation system ASPARTIX [23].5 Finally, we address Michael Gelfond’s
epistemic specification, a powerful extension of standard ASP with modal atoms which
allow for meta-reasoning over answer sets. In particular, we will consider a certain
subclass which is directly amenable to manifolds.

5 For a web frontend, seehttp://rull.dbai.tuwien.ac.at:8080/ASPARTIX.

5.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of deciding whether a given
propositional formulaϕ has a unique minimal model. This problem is known to be
in ΘP

2 and to beco-NP-hard (the exact complexity is an open problem). LetI be the
intersection of all models ofϕ. Thenϕ has a unique minimal model iffI is also a
model ofϕ. We thus use our example from the previous section, and definethe program
UNIQUE asSATcc

{t} augmented by rules

ok(C) :- dtt(X,X), pos(C,X);

ok(C) :- not dtt(X,X), neg(C,X);

:- not ok(C), cl(C).

We immediately obtain the following result.

Theorem 1. For any CNF formulaϕ, it holds thatϕ has a unique minimal model, if
and only if programUNIQUE ∪Dϕ has at least one answer set.

A slight adaption of this encoding allows us to formalize CWA-reasoning [13] over
a propositional knowledge baseϕ, since the atomsa in ϕ, for which the corresponding
atomsdtt(a, a) are not contained in an answer set ofSATcc

{t} ∪ Dϕ, are exactly those
which are added negated toϕ for CWA-reasoning.

5.2 Computing the Ideal Extension

Our second example is from the area of argumentation, where the problem of computing
the ideal extension [15] of an abstract argumentation framework was recently shown
to be complete forFPNP

|| in [24]. Thus, this task cannot be compactly encoded via
normal programs (under usual complexity theoretic assumptions). On the other hand,
the complexity shows that employing disjunction is not necessary, if one instead uses
weak constraints. We first give the basic definitions following [25].

Definition 9. An argumentation framework (AF)is a pairF = (A,R) whereA ⊆ U
is a set of arguments andR ⊆ A× A. (a, b) ∈ R means thata attacksb. An argument
a ∈ A is defendedbyS ⊆ A (in F) if, for eachb ∈ A such that(b, a) ∈ R, there exists
a c ∈ S, such that(c, b) ∈ R. An argumenta is admissible (inF) w.r.t. a setS ⊆ A if
eachb ∈ A which attacksa is defended byS.

Semantics for argumentation frameworks are given in terms of so-called extensions.
The next definitions introduce two such notions which also underlie the concept of an
ideal extension.

Definition 10. Let F = (A,R) be an AF. A setS ⊆ A is said to beconflict-free (in
F), if there are noa, b ∈ S, such that(a, b) ∈ R. A setS is anadmissible extensionof
F , if S is conflict-free inF and eacha ∈ S is admissible inF w.r.t. S. The collection
of admissible extensions is denoted byadm(F). An admissible extensionS of F is a
preferred extensionof F , if for eachT ∈ adm(F), S 6⊂ T . The collection of preferred
extensions ofF is denoted bypref (F).

The original definition of ideal extensions is as follows [15].

Definition 11. Let F be an AF. A setS is called ideal for F , if S ∈ adm(F) and
S ⊆

⋂

T∈pref (F) T . A maximal (w.r.t. set-inclusion) ideal set ofF is called anideal
extensionof F .

It is known that each AF possesses a unique ideal extension. In [24], the following
algorithm to compute the ideal extension of an AFF = (A,R) is proposed. Let

X−
F = A \

⋃

S∈adm(F)

S and

X+
F = {a ∈ A | ∀b, c : (b, a), (a, c) ∈ R ⇒ b, c ∈ X−

F } \X−
F ,

and define the AFF ∗ = (X+
F ∪ X−

F , R∗) where the attack relationR∗ is given as
R ∩ {(a, b), (b, a) | a ∈ X+

F , b ∈ X−
F }. F ∗ is a bipartite AF in the sense thatR∗ is a

bipartite graph.

Proposition 6 ([24]).The ideal extension of AFF is given by
⋃

S∈adm(F∗)(S ∩X+
F).

The set of all admissible atoms for a bipartite AFF can be computed in polynomial
time using Algorithm 1 of [26]. This is basically a fixpoint iteration identifying argu-
ments inX+

F that cannot be in an admissible extension: First, argumentsin X0 = X+
F

are excluded, which are attacked by unattacked arguments (which are necessarily in
X−

F), yieldingX1. Now, arguments inX−
F may be unattacked byX1, and all arguments

in X1 attacked by such newly unattacked arguments should be excluded. This process is
iterated until either no arguments are left or no more argument can be excluded. There
may be at most|X+

F | iterations in this process.
We exploit this technique to formulate an ASP-encodingIDEAL. We first describe a

program the answer sets of which characterize admissible extensions. Then, we use the
brave manifold of this program in order to determine all arguments contained in some
admissible extension. Finally, we extend this manifold program in order to identifyF ∗

and to simulate Algorithm 1 of [26].
The argumentation frameworks will be given toIDEAL as sets of input facts. Given

an AFF = (A,R), letDF = {a(x) | x ∈ A} ∪ {r(x, y) | (x, y) ∈ R}. The program
ADM, given by the rules below, computes admissible extensions (cf. [27, 23]):

in(X) :- not out(X), a(X);

out(X) :- not in(X), a(X);

:- in(X), in(Y), r(X,Y);

def(X) :- in(Y), r(Y,X);

:- in(X), r(Y,X), not def(Y).

Indeed one can show that, given an AFF , the answer sets ofADM ∪ DF are
in a one-to-one correspondence to the admissible extensions of F via the in(·) predi-
cate. In order to determine the brave consequences ofADM for predicatein, we form
ADMbc

{in}, and extend it by collecting all brave consequences ofADM ∪DF in predi-
catein(·), from which we can determineX−

F (represented byin−(·)), X+
F (represented

by in+(·), using auxiliary predicatenot in+(·)), andR∗ (represented byq(·, ·)).

in(X) :- dinin(X,X);

in−(X) :- a(X), not in(X);

in+(X) :- in(X), not not in+(X);

not in+(X) :- in(Y), r(X,Y);

not in+(X) :- in(Y), r(Y,X);

q(X,Y) :- r(X,Y), in+(X), in−(Y);

q(X,Y) :- r(X,Y), in−(X), in+(Y).

In order to simulate Algorithm 1 of [26], we use the elements in X+
F for marking

the iteration steps. To this end, we use an arbitrary order< on ASP constants (all ASP
systems provide such a predefined order) and define successor, infimum and supremum
among the constants representingX+

F w.r.t. the order<.

nsucc(X,Z) :- in+(X), in+(Y), in+(Z), X < Y, Y < Z;

succ(X,Y) :- in+(X), in+(Y), X < Y, not nsucc(X,Y);

ninf(Y) :- in+(X), in+(Y), X < Y ;

nsup(X) :- in+(X), in+(Y), X < Y ;

inf(X) :- in+(X), not ninf(X);

sup(X) :- in+(X), not nsup(X).

We now use this to iteratively determine arguments that are not in the ideal exten-
sion, usingnid(·, ·), where the first argument is the iteration step. In the first iteration
(identified by the infimum) all arguments inX+

F which are attacked by an unattacked
argument are collected. In subsequent iterations, all arguments from the previous steps
are included and augmented by arguments that are attacked byan argument not attacked
by arguments inX+

F that were not yet excluded in the previous iteration. Finally, ar-
guments in the ideal extension are those that are not excluded from X+

F in the final
iteration (identified by the supremum).

att0(X) :- q(Y,X);

atti(J, Z) :- q(Y,Z), in+(Y), not nid(J, Y), in+(J);

ideal(X) :- in+(X), sup(I), not nid(I,X);

nid(I, Y) :- succ(J, I), nid(J, Y);

nid(I, Y) :- inf(I), q(Z, Y), in+(Y), not att0(Z);

nid(I, Y) :- succ(J, I), q(Z, Y), in+(Y), not atti(J, Z).

If we putADMbc
{in} and all of these additional rules together to form the program

IDEAL, we obtain the following result:

Theorem 2. LetF be an AF andA ∈ AS(IDEAL∪DF). Then, the ideal extension of
F is given by{a | ideal(a) ∈ A}.

5.3 Epistemic Specifications

Epistemic Specificationshave been defined in [16], and are an extension of programs as
defined in Section 2 by the possible occurrence of epistemic operatorsK andM. In this
paper, we will consider a simple class of epistemic specifications, which includes the
main motivating example of [16]6.

A simple epistemic literalis one ofKa, ¬Ka, Ma or ¬Ma, wherea is an atom as
in Section 2. Asimple epistemic specificationis a set of epistemic rules

a1 ∨ · · · ∨ an :- B1, . . . , Bk, not bk+1, . . . , not bm (1)

wheren ≥ 0, m ≥ k ≥ 0, n + m > 0, B1, . . . , Bk are atoms or simple epistemic
literals anda1, . . . , an, bk+1, . . . , bm are atoms. We say that an atoma directly modally
depends on an atomb if a is one ofa1, . . . , an andb occurs in a simple epistemic literal
of B1, . . . , Bk in a rule of the form (1). A simple epistemic specification ismodally
acyclicif no atom depends modally on itself in the transitive closure of the direct modal
dependency relation. A specification isone-step modalif each atoma directly modally
depends only on atoms which do not depend modally on other atoms.

Herbrand Universe and Base are defined as for standard logic programs, consid-
ering also atoms in simple epistemic literals (but no modal operators). In the context
of epistemic specifications, collections of interpretations are calledworld views. Satis-
faction of standard atoms by interpretations is defined as usual. Satisfaction of simple
epistemic literals is defined with respect to world views: A world viewW satisfiesKa,
written W |= Ka, iff ∀B ∈ W : a ∈ B. W satisfiesMa, written W |= Ma, iff
∃B ∈ W : a ∈ B. Moreover,W |= ¬Ka iff W 6|= Ka andW |= ¬Ma iff W 6|= Ma.

Themodal reductof a simple epistemic specificationΠ with respect to a world view
W , denotedΠW , is obtained by deleting all epistemic rules ofΠ of the form (1) where
W 6|= Bi for some simple epistemic literalBi, and by deleting all simple epistemic
literals of the remaining rules. Note thatΠW is a standard program without epistemic
literals.W is a world view ofΠ iff W = AS(ΠW).

Observe that standard programs without weak constraints are epistemic specifica-
tions, and their modal reduct is equal to the original program. These programs therefore
have a single world view, the collection of the answer sets ofthe program.

A one-step modal epistemic specificationΠ can be split into two specificationsΠ1

(the lower part) andΠ2 (the upper part), whereΠ1 ∩Π2 = ∅ andΠ1 ∪Π2 = Π, such
thatΠ1 does not containK orM, and no head atom ofΠ2 occurs inΠ1. This is similar
to, and in fact a special case of, splitting epistemic specifications as defined in [28].

In order to be able to compute world views of one-step modal epistemic specifica-
tions by means of manifold programs, we would like them to have a single world view.
The reason is that it is not clear how to differentiate between a specification having
multiple world views and a specification having a single world view that contains all
sets of the multiple world views of the first specification. The issues are best explained
by an example.

6 Here we do not consider strong negation (except for negating epistemicoperators) in order to
keep the framework simple. It can be extended without major efforts to incorporate also strong
negation.

Example 8.Consider the following one-step modal epistemic specification

:- a,Kb;

:- b,Ka;

:- Ma,Mb;

a ∨ b :- .

It has two world views,{{a}} and{{b}}. It is not clear how to find a manifold
encoding for this specification which lets one differentiate its output from a manifold
encoding of a specification having one world view{{a}, {b}} (for example the specifi-
cation consisting only ofa ∨ b). The difficulty is that one would have to encode also an
indicator in which world view(s) an interpretation occurs,which appears to be a hard,
if not impossible, task.

The important observation in the example is that the upper part of the specification
can trigger incoherences (in this case because of constraint violations), and for this rea-
son not all answer sets of the lower part necessarily have a corresponding answer set in
a world view of the complete specification. A similar issue has been described in [28],
where specifications are calledsafeif (for the special case of one-step modal epistemic
specifications) the modal reduct of the upper part with respect to the collection of an-
swer sets of the lower part has answer sets when any answer setof the lower part is
added as a set of facts, that is if

∀A ∈ AS(Π1) : AS(Π
AS(Π1)
2 ∪A) 6= ∅.

For any safe one-step modal epistemic specificationΠ and one of its world views
W , anyA ∈ W extends anA′ ∈ AS(Π1) and, vice versa, eachA′ ∈ AS(Π1) is
contained in someA ∈ W . Therefore, for any epistemic literalℓ in Π and any world
view W of Π, we have thatW |= ℓ if and only if AS(Π1) |= ℓ, and as a consequence
ΠW = ΠAS(Π1) and soW = AS(ΠAS(Π1)) is unique.

Example 9.Consider the following variantΠg of the main motivating example of [16].

eligible(X) :- highGPA(X);

eligible(X) :- minority(X), fairGPA(X);

notEligible(X) :- notFairGPA(X),notHighGPA(X);

interview(X) :- ¬Keligible(X),¬KnotEligible(X).

This (and any extensions by facts) is a safe one-step modal epistemic specification:
The first three rules form the lower partΠ1 and the last rule forms the upper partΠ2.

Moreover, observe that due to the considerations above, forthe lower partΠ1 of a
one-step modal epistemic specificationΠ, AS(Π1) |= Ma iff Π1 |=b a (AS(Π1) |=
¬Ma iff Π1 6|=b a) andAS(Π1) |= Ka iff Π1 |=c a (AS(Π1) |= ¬Ka iff Π1 6|=c a)
for epistemic literalsMa,¬Ma,Ka,¬Ka in Π.

We can then use Proposition 5 in order to simulate the modal reductΠW of the
unique world viewW of Π. In particular,

W |= Mp(t1, . . . , tn) iff dpp(t1, . . . , tn,X) ∈ AS(Π1
bc
p),

(with X being a sequence of suitably chosen variables, cf. Section 4) and

W |= Kp(t1, . . . , tn) iff dpp(t1, . . . , tn,X) ∈ AS(Π1
cc
p).

Moreover, we haveW |= ¬Mp(t1, . . . , tn) iff dpp(t1, . . . , tn,X) 6∈ AS(Π1
bc
p), and

W |= ¬Kp(t1, . . . , tn) iff dpp(t1, . . . , tn,X) 6∈ AS(Π1
cc
p). Making sure that allΠ1

cc
p

andΠ1
bc
p use distinct symbols, different also from those inΠ, we can form the union

of all of these programs.
That means that we can replace each occurrence ofKp(t1, . . . , tn) in Π by the

manifold atomdpp(t1, . . . , tn,X) (and¬Kp(t1, . . . , tn) by the corresponding default
negated atom, i.e.not dpp(t1, . . . , tn,X)) and addΠ1

cc
{p}; symmetrically, we can re-

place each occurrence ofMp(t1, . . . , tn) by dpp(t1, . . . , tn,X) (and¬Mp(t1, . . . , tn)

by not dpp(t1, . . . , tn,X)) and addΠ1
bc
{p}. Let us call the program obtained in this way

Π. Π can be split such thatΠ1
bc
{p} andΠ1

cc
{p} form the bottom programΠ1, and the

partial evaluationΠ
′
of Π with respect toAS(Π1) coincides withΠW for the unique

world viewW of Π. It follows that the restriction of eachA ∈ AS(Π) to the symbols
of Π is in W , and for eachA ∈ W , anA′ ∈ AS(Π) exists, such that the restriction of
A′ to symbols inΠ is A.

Example 10.Reconsider the main motivating exampleΠg of [16] as reported in Ex-
ample 9.Πg is:

eligible(X) :- highGPA(X);

eligible(X) :- minority(X), fairGPA(X);

notEligible(X) :- notFairGPA(X),notHighGPA(X);

interview(X) :- not deligibleeligible(X,X), not dnotEligible
notEligible(X,X);

deligibleeligible(X,X1) :- c1, d
eligible
highGPA(X,X1);

deligibleeligible(X,X1) :- c1, d
eligible
minority(X,X1), d

eligible
fairGPA(X,X1);

deligiblenotEligible(X,X1) :- c1, d
eligible
notFairGPA(X,X1), d

eligible
notHighGPA(X,X1);

deligibleeligible(X1, X1) :- i1;

c1 :- not i1;

i1 :- not c1;

:∼ deligibleeligible(X1, X1);

:∼ i1;

dnotEligible
eligible (X,X1) :- c2, d

notEligible
highGPA (X,X1);

dnotEligible
eligible (X,X1) :- c2, d

notEligible
minority (X,X1), d

notEligible
fairGPA (X,X1);

dnotEligible
notEligible(X,X1) :- c2, d

notEligible
notFairGPA(X,X1), d

notEligible
notHighGPA(X,X1);

dnotEligible
notEligible(X1, X1) :- i2;

c2 :- not i2;

i2 :- not c2;

:∼ dnotEligible
notEligible(X1, X1);

:∼ i2.

This rewriting can be extended to safe modally acyclic epistemic specifications es-
sentially by a repeated application, but special care must be taken of the involved weak
constraints.

6 Conclusion

In this paper, we provided a novel method to rewrite ASP programs in such a way that
reasoning over all answer sets of the original program can beformulated within the
same program. Our method exploits the well-known concept ofweak constraints. We
illustrated the impact of our method by encoding the problems of (i) deciding whether
a propositional formula in CNF has a unique minimal model, (ii) computing the ideal
extension of an argumentation framework. For (i) and (ii), known complexity results
witness that our encodings are adequate in the sense that efficient ASP encodings with-
out weak constraints or similar constructs are assumed to beinfeasible. As a final ap-
plication we considered (iii) epistemic specifications, where we used our concepts to
simulate the semantics of epistemic literals within a single world view (thus we had
to restrict ourselves to a particular subclass of epistemicspecifications). Our encodings
provide evidence that the class of disjunctive (non-disjunctive) safe one-step modal
epistemic specifications is easier to evaluate (inΘP

3 resp.ΘP
2) as the respective general

class of disjunctive (non-disjunctive) epistemic specifications (which have been shown
to be hard forΣP

3 resp.ΣP
2 in [21]).

Concerning related work, we remark that the manifold program for cautious con-
sequences is closely related to the concept of data disjunctions [29] (this paper also
contains a detailed discussion about the complexity classΘP

2 and related classes for
functional problems). Concepts similar to manifold programs have also been studied
in the area of default logic, where a method for reasoning within a single extension
has been proposed [30]. That method uses set-variables which characterize the set of
generating defaults of the original extensions. However, such an approach differs con-
siderably from ours as it encodes certain aspects of the semantics (which ours does not),
which puts it closer to meta-programming (cf. [31]).

As future work, we intend studying the use of alternative preferential constructs in
place of weak constraints. Moreover, we are currently developing a suitable language
for expressing reasoning with brave, cautious and definite consequences, allowing also
for mixing different reasoning modes. This language shouldserve as a platform for

natural encodings of problems in complexity classesΘP
2 , ΘP

3 , FPNP
|| , andFPΣP

2

|| . A
first step towards this direction has already been undertaken in [32]; such extensions
should also pave the way to simulate a broader class of epistemic specifications.

References

1. Marek, V.W., Truszczýnski, M.: Stable models and an alternative logic programming
paradigm. In Apt, K., Marek, V.W., Truszczyński, M., Warren, D.S., eds.: The Logic Pro-
gramming Paradigm – A 25-Year Perspective. Springer (1999) 375–398

2. Niemel̈a, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell.25(3–4) (1999) 241–273

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2002)

4. Gelfond, M.: Representing knowledge in A-Prolog. In Kakas, A., Sadri, F., eds.: Compu-
tational Logic: From Logic Programming into the Future. Number 2408 in LNCS/LNAI,
Springer (2002) 413–451

5. Balduccini, M., Gelfond, M., Watson, R., Nogeira, M.: The USA-Advisor: A case study in
answer set planning. In Eiter, T., Faber, W., Truszczyński, M., eds.: Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR
2001). Volume 2173 of LNCS., Springer (2001) 439–442

6. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for advanced integration of incomplete and inconsistent data. In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005), ACM Press (2005) 915–917

7. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge
with weight constraint rules. In Provetti, A., Son, T.C., eds.: Proceedings of the 1st Interna-
tional Workshop on Answer Set Programming. (2001)

8. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub,T., Truszczýnski, M.: The
first answer set programming system competition. In Baral, C., Brewka, G., Schlipf, J., eds.:
Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2007). Volume 4483 of LNCS., Springer (2007) 3–17

9. Bravo, L., Bertossi, L.E.: Logic programs for consistently querying data integration systems.
In Gottlob, G., Walsh, T., eds.: Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI’03), Morgan Kaufmann (2003) 10–15

10. Sacc̀a, D.: Multiple total stable models are definitely needed to solve unique solutionprob-
lems. Inf. Process. Lett.58(5) (1996) 249–254

11. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE
Trans. Knowl. Data Eng.12(5) (2000) 845–860

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Trans. Comput. Log.7(3) (2006)
499–562

13. Reiter, R.: On closed world data bases. In Gallaire, H., Minker, J.,eds.: Logic and Databases.
Plenum Press (1978) 55–76

14. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell.
171(10-15) (2007) 619–641

15. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell.
171(10-15) (2007) 642–674

16. Gelfond, M.: Logic programming and reasoning with incomplete information. Annals of
Mathematics and Artificial Intelligence12(1–2) (1994) 89–116

17. Gelfond, M.: Strong introspection. In: Proceedings of the 9th National Conference on Arti-
ficial Intelligence (AAAI 1991), AAAI Press / The MIT Press (1991) 386–391

18. Wang, K., Zhang, Y.: Nested epistemic logic programs. In Baral, C., Greco, G., Leone, N.,
Terracina, G., eds.: Proceedings of the 8th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2005). Volume 3662 of LNCS. (2005) 279–290

19. Zhang, Y.: Computational properties of epistemic logic programs. In Doherty, P., Mylopou-
los, J., Welty, C.A., eds.: Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2006), AAAI Press (2006) 308–317

20. Zhang, Y.: Updating epistemic logic programs. J. Log. Comput.19(2) (2009) 405–423
21. Truszczýnski, M.: Revisiting epistemic specifications. In: (this volume). Springer (2010)
22. Gelfond, M., Lifschitz, V.: Classical negation in logic programs anddisjunctive databases.

New Generation Comput.9(3/4) (1991) 365–386

23. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation
frameworks. Argument and Computation1(2) (2010) 144–177

24. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18) (2009)
1559–1591

25. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell.77(2) (1995) 321–358

26. Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic con-
straints. Artif. Intell.171(10-15) (2007) 701–729

27. Osorio, M., Zepeda, C., Nieves, J.C., Cortés, U.: Inferring acceptable arguments with answer
set programming. In: Proceedings of the 6th Mexican International Conference on Computer
Science (ENC 2005), IEEE (2005) 198–205

28. Watson, R.: A splitting set theorem for epistemic specifications. In Baral, C., Truszczýnski,
M., eds.: Proceedings of the 8th International Workshop on Non-Monotonic Reasoning
(NMR 2000). (2000) http://arxiv.org/abs/cs/0003038.

29. Eiter, T., Veith, H.: On the complexity of data disjunctions. Theor. Comput. Sci.288(1)
(2002) 101–128

30. Delgrande, J.P., Schaub, T.: Reasoning credulously and skeptically within a single extension.
Journal of Applied Non-Classical Logics12(2) (2002) 259–285

31. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing preferred answer sets by meta-
interpretation in answer set programming. TPLP3(4-5) (2003) 463–498

32. Faber, W., Woltran, S.: A framework for programming with moduleconsequences.
In de Vos, M., Schaub, T., eds.: Proceedings of the LPNMR 2009 Workshop
on Software Engineering for Answer Set Programming (SEA 2009). (2009) 34–48
http://sea09.cs.bath.ac.uk/downloads/sea09proceedings.pdf.

