
A Polynomial Reduction from ASPDA to ASP⋆

Wolfgang Faber

Department of Mathematics
University of Calabria

87030 Rende (CS), Italy
wf@wfaber.com

Abstract. ASPDA is a framework for expressing defeasibility in Answer Set
Programs via so-called argumentation theories, proposed by Wan, Kifer, and
Grosof in [2]. The authors describe a reduction from ASPDA to plain Answer
Set Programming, which however exponentially inflate programs. In thisnote,
we present an alternative reduction, which does not suffer from this problem. As
a side-effect, complexity results for ASPDA are established.

1 Introduction

ASPDA is a framework for expressing defeasibility in AnswerSet Programs via so-
called argumentation theories, proposed by Wan, Kifer, andGrosof in [2]. ASPDA pro-
grams provide a very general means for defeating literals and rules and capture several
earlier proposals for defeasibility in logic programming.In [2], the authors also pro-
vide a reduction from ASPDA to ASP (in the sense of [1]). However, this reduction
can easily lead to ASP programs that are exponentially larger than the original ASPDA
programs. In this paper, we show that this exponential behavior is not necessary, by pro-
viding an alternative reduction. Different to the reduction in [2], ours introduces new
symbols and also needs a concept of rule identifier, which make proving correctness of
the reduction slightly more cumbersome. However, this reduction immediately provides
complexity results for ASPDA, in particular showing that (virtually all) computational
tasks over ASPDA programs have the same complexity as those over ASP programs.

2 ASPDA: Syntax and Semantics

We briefly review syntax and semantics of ASPDA, for details we refer to [2]. The
language assumes a set of atoms; in [2] this set is not fixed, here we assume it to consist
of first-order or propositional atomic formulas. There are two kinds of negation, and a
literal is either an atomA, neg A, naf A, or naf neg A. A rule is of the form

@r L1 ∨ · · · ∨ Lk :− Body (1)

wherek ≥ 0, r is a term and the tag of the rule (different rules can share thesame rule
tag), eachLi (0 < i ≤ k) is a literal, andBody is a conjunction of literals. Given a rule

⋆ This work was supported by M.I.U.R. within the PRIN project LoDeN.

of the form (1), the termh(r, Li) (handle(r, Li) in [2]) is the handle for each of the
head literalsLi (0 ≤ i ≤ k). Each rule can be either defeasible or strict.

An argumentation theoryAT is a set of strict rules of the form (1), which makes
use of a distinguished predicate$defeatedAT that may occur only in rule heads. The
subscriptAT is usually omitted when the context is clear. An answer-set program with
defaults and argumentation theories (ASPDA) is a set of rules of the form (1), which
may comprise an argumentation theory. In [2], the argumentation theory is usually con-
sidered separated from the program, but since it is syntactically and semantically the
same as a special kind of program, we consider it as part of theprogram for simplicity.

Herbrand universe and base are defined in the standard way, where the Herbrand
base consists not just of ground atoms, but of groundnaf-free literals. An (Herbrand)
interpretation is a subset of the Herbrand base, and we will assume consistent interpre-
tations, i.e. no interpretation contains bothA andneg A.

A naf-free literalL is true in an interpretationI if L ∈ I, nafL is true inI if L 6∈ I;
otherwise these literals are false inI. A strict rule is satisfied inI if at least one head
literal is true inI whenever all body literals are true inI. A defeasible rule of the form
(1) is satisfied if it either meets the condition for a strict rule or if $defeated(h(r, Li))
is true inI for all 0 < i ≤ k. As usual, an interpretationI is a model of an ASPDA
programP if I satisfies all rules inP . A model of a programP is minimal if none of
its subsets is a model ofP .

For defining answer sets, [2] define the quotientP
I

for an ASPDA programP and
an interpretationI in four steps: (i) Delete every rule inP in which anaf body literal
is false inI; (ii) in each defeasible rule of the form (1), delete allLi that are true inI; if
all Li are deleted, delete the complete rule; (iii) remove allnaf-literals of the remaining
rules; (iv) remove tags from the remaining rules. An interpretationI is an answer set of
an ASPDAP if I is a minimal model ofP

I
.

Traditional ASP can be viewed as a special case of ASPDA. ASPDA programs that
have no defeasible rules and empty argumentation theory canbe viewed as ASP pro-
grams. It is easy to show that the quotientP

I
coincides with the reductP I [1] for such

programs (the only difference are the rule tags, which are irrelevant for these programs).

3 A Polynomial Reduction from ASPDA to ASP

In [2] a reduction from ASPDA to ASP is provided that preserves answer sets, which
however, produces an exponential number of rules in general. We provide an alternative
reduction, which does not suffer from this exponential increase in size.

Definition 1. Given an ASPDAP , for each defeasible rule of the form (1), create

$der(r, L1) ∨ · · · ∨ $der(r, Lk) :− Body, naf $rdef(rid) (2)

$rdef(rid):− $defeated(h(r, L1)), . . . , $defeated(h(r, Lk)) (3)

where$rdef and$der are fresh predicates,rid is a rule identifier (obtained for exam-
ple by the index of a fixed enumeration of rules; note that the rule tag cannot serve as

the rule identifier), and for each0 < i ≤ k create

Li :− $der(r, Li) (4)

$der(r, Li) :− Li, naf $defeated(h(r, Li)) (5)

:− $der(r, Li), $defeated(h(r, Li)) (6)

For each strict rule, delete its rule tag. We refer to the obtained program astr(P).

Example 1.For@r a ∨ b :− the reduction of [2] generates

a ∨ b :− naf $defeated(h(r, a)), naf $defeated(h(r, b))

a :− naf $defeated(h(r, a)), $defeated(h(r, b))

b :− $defeated(h(r, a)), naf $defeated(h(r, b))

(and also:−$defeated(h(r, a)), $defeated(h(r, b)), but this seems to be due to a
typo). The reduction of Definition 1 generates

$der(r, a) ∨ $der(r, b) :− naf $rdef(rid) a :− $der(r, a) b :− $der(r, b)
$rdef(rid) :− $defeated(h(r, a)), $defeated(h(r, b))
$der(r, a) :− a, naf $defeated(h(r, a)) :− $der(r, a), $defeated(h(r, a))
$der(r, b) :− b, naf $defeated(h(r, b)) :− $der(r, b), $defeated(h(r, b))

In general, for each rule withk head literals, the reduction of Definition 1 creates3k+2
rules, while the one of [2] creates2k − 1 rules.

Theorem 1. Given an ASPDAP , there is a one-to-one relationship between the answer
sets ofP and those oftr(P). In particular, for each answer setA of P , tr(A) =
A ∪ {$der(r, L) | a defeasible rule with tagr in P exists with true body andL in its
head, s.t.$defeated(h(r, L)) 6∈ A andL ∈ A }∪{$rdef(rid) | a defeasible rule with
identifierrid and tagr in P exists s.t. for each head literalL, $defeated(h(r, L)) ∈ A

holds} is an answer set oftr(P), and these are the only answer sets oftr(P).

Proof. Assume thatA is an answer set ofP (hence a minimal model ofP
A

). We show

that tr(A) is a minimal model oftr(P)
tr(A) . First observe that for each rule inP which is

deleted in step (i) of the definition ofP
A

, the rule itself or its corresponding rule (4) is

not in tr(P)
tr(A) either. Moreover, a defeasible rule inP for which $defeated(h(r, L)) ∈

A holds for all head literalsL is not in P
A

due to step (ii) of the definition ofP
A

,

and no reduct of the corresponding rule (4) is intr(P)
tr(A) either, since by construction

$rdef(rid) ∈ tr(A). For all other defeasible rules of form (1) inP (i.e. those not
deleted in steps (i) and (ii) of the definition ofP

A
), P

A
contains

∨
L∈K L :−Body′, s.t.K

is the set of head literals s.t.$defeated(h(r, L) 6∈ A andBody′ is Body withoutnaf-
literals. tr(P)

tr(A) instead has$der(r, L1)∨· · ·∨$der(r, Lk) :−Body′, $der(r, Li) :− Li

for Li s.t.$defeated(h(r, Li)) 6∈ A and also all rules of type (3), (4), and (6). By con-
struction,tr(A) is a model oftr(P)

tr(A) . To see minimality, observe that$der(r, Li) take

the place ofLi in rule heads of reducts intr(P)
tr(A) . So if there is a modelN (tr(A) for

tr(P)
tr(A) not containing some$der(r, Li), then alsoLi must not be in that model because

of a rule of type (4). Removing other literals fromtr(A) cannot yield a model oftr(P)
tr(A) .

Assume now thatM is an answer set fortr(P). We show thatM = tr(A) for some
answer setA of P . LetM ′ denote the setM after removing all literals$der(r, L) and
$rdef(rid). First we note thatM ′ satisfies all strict rules in the reductP

M ′
. Concerning

defeasible rules, if$rdef(rid) ∈ M , then the rule with identifierrid is not in P
M ′

.

Otherwise, rule (2) is intr(P)
M

and a corresponding ruler′ obtained fromr is also in
P
M ′

. Note thatr′ in general has fewer head literals than (2), however, we observe that
for eachLi that was removed fromr when creatingr′ in P

M ′
there is a rule (6) and

for each of theseLi, $defeated(h(r, Li)) ∈ M ′ and$defeated(h(r, Li)) ∈ M and
so$der(r, Li) 6∈ M . Hence if rule (2) has a true body inM , $der(r, Lj) ∈ M holds
only if $defeated(h(r, Lj)) 6∈ M and$defeated(h(r, Lj)) 6∈ M ′. Moreover, rules
(4) enforce thatLj ∈ M andLj ∈ M ′. It follows that all rules in P

M ′
that stem from

defeasible rules are satisfied byM ′ and henceM ′ is a model of P
M ′

. Minimality of
M ′ then follows from the minimality ofM and the fact that the satisfaction patterns of
rule heads of the reducts of defeasible rules and the corresponding reducts of rules (2)
coincide. ThereforeM ′ is an answer set ofP andM = tr(M ′).

The computational complexity of reasoning tasks over ASPDAprograms was left
open in [2]. It is obvious that the reduction in Definition 1 runs in polynomial time,
hence the reduction provides a tight upper bound for the complexity of all computa-
tional tasks of ASPDA, where the corresponding task for ASP is at least polynomial.

Corollary 1. Given a computational task over ASP programs wwhich is complete for
located a complexity class that containsP , the corresponding task over ASPDA pro-
grams is located in the same complexity class.

Since traditional ASP programs are a special case of ASPDA, lower bounds extend
trivially from ASP to ASPDA.

4 Conclusion

We have provided an alternative reduction from ASPDA to ASP,which avoids an ex-
ponential increase in space and thus is an immediate improvement over an analogous
reduction in [2]. Contrary to the earlier reduction, it makes use of additional symbols
and also needs the concept of a rule identifier. As an immediate consequence of the re-
duction, we obtain results on the computational complexityof computational tasks over
ASPDA, which coincide with those of ASP for practically all relevant tasks.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs andDisjunctive Databases.
New Generation Computing 9, 365–385 (1991)

2. Wan, H., Kifer, M., Grosof, B.N.: Defeasibility in answer set programs via argumentation
theories. In: Hitzler, P., Lukasiewicz, T. (eds.) Web Reasoning and Rule Systems - Fourth
International Conference (RR 2010). LNCS, vol. 6333, pp. 149–163. (2010)

