The Intelligent Grounder of DLV*

Wolfgang Faber, Nicola Leone, and Simona Perri

Department of Mathematics, University of Calabria,
P.te P. Bucci, Cubo 30B, I-87036 Rende, Italy

{faber,leone,perri}@mat.unical.it

Abstract. In this work, we give an overview of the DLV Intelligent
Grounder, one of the most popular Answer Set Programming instantia-
tors, and a very strong point of the DLV system. Based on a variant
of semi-naive evaluation, it also includes several advanced optimization
techniques and supports a number of application-oriented features which
allow for the successful exploitation of DLV in real-world contexts, also
at an industrial level.

1 Introduction

Answer Set Programming (ASP) [18,19,11,32] is a powerful logic-based pro-
gramming language which is enjoying increasing interest within the scientific
community also thanks to the availability of a number of efficient implemen-
tations [27,15,23,29,30,2]. DLV [27] is one of the most successful and widely
used ASP systems, which has stimulated some interest also in industry. DLV’s
implementation is based on solid theoretical foundations. It relies on advanced
optimization techniques and sophisticated data structures.

The computation of answer sets in DLV is characterized by two phases,
namely program instantiation (grounding) and answer set search. The former
transforms the input program into a semantically equivalent one with no vari-
ables (ground) and the latter applies propositional algorithms on the instantiated
program to generate answer sets.

Grounding in DLV is much more than a simple replacement of variables by
all possible ground terms: It partially evaluates relevant program fragments, and
efficiently produces a ground program which has precisely the same answer sets
as the full one, but is much smaller in general. In order to highlight these features,
we qualify it as Intelligent Grounder. Notably, it has the power of a full-fledged
deductive database system, able to completely solve deterministic programs,
most notably normal stratified programs. Moreover, it allows for dealing with
recursive function symbols, and thus for expressing every computable function.
More in detail, the Intelligent Grounder is able to finitely evaluate every program
belonging to the powerful class of finitely-ground (FG) programs with recursive
functions defined in [5].

* Partially supported by the Regione Calabria and the EU under POR Calabria FESR
2007-2013 within the PTIA project of DLVSYSTEM s.r.l.

The DLV grounder plays a key role for the successful deployment of DLV in
real-world contexts. Indeed, it incorporates many algorithms for improving the
performance (see Section 5), including database optimization strategies and par-
allel evaluation techniques allowing for dealing with data-intensive applications.
Moreover, it is endowed with a number of mechanisms that meet the require-
ment of real-world applications and make its usage feasible in practice: database
interoperability is possible by means of an ODBC interface [25, 38] which allows
for both importing input data from and exporting answer set data to an external
database; plugin functions [4] provide a framework for integrating application
specific functions in logic rules and dealing with external sources of computation;
non-ground queries allow for advanced reasoning.

In this paper we overview the DLV Intelligent Grounder, focusing on its
input language, the main evaluation strategy, and recalling the most relevant
optimization techniques. While the software has been available for quite some
time, this work provides its first comprehensive description, including all features
up to the recent release of 2011-12-21.

2 The DLV system and its applications

In this section we provide an overview of the DLV system, in which the Intelligent
Grounder is embedded, focussing on its use within projects and applications. The
DLV project has been active for more than fifteen years, encompassing first the
development and later on the continuous enhancement of the DLV system.

The DLV system offers a range of advanced knowledge modeling features,
providing support for declarative problem solving. Its language extends basic
Answer Set Programming (ASP) with a number of constructs, including aggre-
gates [14], weak constraints [27], functional terms [5]. The latter considerably
increase the expressiveness of the language, which is important in several real-
world contexts. In addition, the system incorporates several front-ends for deal-
ing with specific applications. Concerning efficiency, DLV is competitive with
the most advanced systems in the area of ASP, as confirmed also by the results of
the First and Second ASP System Competitions [16, 10], in which DLV won the
MGS (Modeling, Grounding, Solving) category and the class of decision prob-
lems in P, respectively. DLV did not participate in the most recent competition
[6], as the project team was organizing the event.

DLV is widely used by researchers all over the world: it is used for educational
purposes in courses on Databases and Artificial Intelligence, both in European
and American universities; it has been employed at CERN, the European Lab-
oratory for Particle Physics, for a deductive database application; the Polish
company Rodan Systems S.A. has exploited DLV in a tool for the detection
of price manipulations and unauthorized use of confidential information, used
by the Polish Securities and Exchange Commission. The European Commission
funded a project on Information Integration, which produced a sophisticated
and efficient data integration system based on DLV, called INFOMIX|[24].

Notably, DLV has stimulated quite some interest also in industry. Most in-
dustrial applications of DLV are currently supervised by two spin-off companies
of the University of Calabria, EXEURA and DLVSYSTEM. EXEURA uses DLV
in its line of knowledge management products intended for resale, which includes
OntoDLV [35], a system for ontology specification and reasoning, OLEX [37], a
corporate classification system supporting the entire content classification life-
cycle, and HiLeX [36], a system for ontology-based information extraction from
unstructured documents. DLVSYSTEM, on the other hand, maintains the DLV
system itself and supervises direct deployment of DLV in industrial applications
by means of consulting. The main industrial applications that directly employ
DLV currently are IDUM [22], an intelligent e-tourism system, and a system
for Team Building at the seaport of Gioia Tauro [20], used by the transshipment
company ICO BLG. For more details on applications of DLV, see [21].

3 The Input Language

In this section we first provide syntax and semantics of the core language of
DLV (disjunctive logic programs with functional terms) and then overview some
linguistic extensions. A number of examples illustrate the knowledge modeling
features of the language.

Core Language
A term is either a simple term or a functional term. A simple term is either a
constant or a variable. If ¢; .. .%, are terms and f is a function symbol of arity n,
then f(t1,...,t,) is a functional term. If t1, ... t; are terms and p is a predicate
symbol of arity k, then p(t1,...,tx) is an atom. A literal [is of the form a or
not a, where a is an atom; in the former case [is positive, otherwise negative’.
A rule r is of the form ayv -+ vag:- B1,...,Bn, n0t Bpy1,..., 00t Gy,. where
m >0,k >0 a,...,ar and Bq,..., 0, are atoms. We define H(r) = {aq,
.., ag} (the head of r) and B(r) = BT (r) U B=(r) (the body of r), where
BT (r) = {1, ---, Bn} (the positive body of r) and B~(r) = {not Bni1, ...,
not B,,} (the negative body of r). If H(r) = () then r is a (strong) constraint; if
B(r) =0 and |H(r)| =1 then r is a fact.

A rule r is safe if each variable of r has an occurrence in Bt (r). A DLV
program is a finite set P of safe rules. A program (a rule, a literal) is said to
be ground if it contains no variables. A predicate is defined by a rule if the
predicate occurs in the head of the rule. A predicate defined only by facts is an
EDB predicate, the remaining predicates are IDB predicates. The set of all facts
in P is denoted by Facts(P); the set of instances of all EDB predicates in P is
denoted by EDB(P).

Given a program P, the Herbrand universe of P, denoted by Up, consists of
all (ground) terms that can be built combining constants and function symbols
appearing in P. The Herbrand base of P, denoted by Bp, is the set of all ground

! Note that the DLV language also supports strong negation; however, for simplicity,
in this paper we do not consider it, since it is irrelevant for the instantiation process.

atoms obtainable from the atoms of P by replacing variables with elements from
Up. A substitution for a rule r € P is a mapping from the set of variables of r to
the set Up of ground terms. A ground instance of a rule r is obtained applying
a substitution to r. The instantiation (grounding) Ground(P) of P is defined as
the set of all ground instances of its rules over Up. An interpretation I for P is a
subset of Bp. A positive literal a (resp., a negative literal not a) is true w.r.t. T
if a € I (resp., a ¢ I); it is false otherwise. Given a ground rule r, we say that r
is satisfied w.r.t. I if some atom appearing in H(r) is true w.r.t. I or some literal
appearing in B(r) is false w.r.t. I. Given a ground program P, we say that [
is a model of P, iff all rules in Ground(P) are satisfied w.r.t. I. A model M is
minimal if there is no model N for P such that N C M. The Gelfond-Lifschitz
reduct [19] of P, w.r.t. an interpretation I, is the positive ground program P!
obtained from Ground(P) by: (i) deleting all rules having a negative literal false
w.r.t. I; (i) deleting all negative literals from the remaining rules. I C Bp is
an answer set for a program P iff I is a minimal model for P’. The set of all
answer sets for P is denoted by AS(P).

It is worthwile noting that, even disregarding the extensions that will be pre-
sented in the next subsection, the DLV core language is quite expressive. Indeed,
its function-free fragment allows us to express, in a precise mathematical sense,
every property of finite structures over a function-free first-order structure that
is decidable in nondeterministic polynomial time with an oracle in NP [11] (i.e.,
it captures the complexity class £1"). Thus, even this fragment allows for encod-
ing problems that cannot be translated to SAT in polynomial time. Importantly,
the encoding of a large variety of problems is very concise, simple, and elegant.

Ezample 1. Consider the following problem, called EXAM-SCHEDULING, which
consists of scheduling examinations for courses. In particular, we want to assign
exams to time slots such that no two exams are assigned for the same time slot
if the respective courses have a student in common (we call such courses ”in-
compatible”). Supposing that there are three time slots available, namely, tsq,

tso and tsz, we express the problem by the following program Ps.p:

r1: assign(X,ts1) vassign(X,tss) vassign(X,ts3) : - course(X).
s1: :—assign(X,S),assign(Y, S), incompatible(X,Y).

Here we assume that the courses and the pair of incompatible courses are spec-
ified by a set F of input facts with predicate course and incompatible, respec-
tively. Rule r; says that every course is assigned to one of the three time slots;
strong constraint s; (a rule with empty head) expresses that no two incompat-
ible courses can be overlapped, that is, they cannot be assigned to the same
time slot. There is a one-to-one correspondence between the solutions of the
EXAM-SCHEDULING problem and the answer sets of Ps., U F.

Linguistic Extensions

An important feature of the DLV language are weak constraints [27], which allow
for expressing optimization problems. A weak constraint is denoted like a strong
constraint, but using the symbol :~ instead of :-. Intuitively, weak constraints

allow for expressing conditions that should be satisfied, but not necessarily have
to be. The informal meaning of a weak constraint :~ B. is “B should preferably
be false”. Additionally, a weight and a priority level for the weak constraint
may be specified enclosed in square brackets (by means of positive integers or
variables). When not specified, these values default to 1. Optimal answer sets
are those minimizing the sum of weights of the violated weak constraints in
the highest priority level and, among them, those which minimize the sum of
weights of the violated weak constraints in the next lower level, and so on. Weak
constraints allow us to express “desiderata” and are very useful in practice, since
they allow for obtaining a solution (answer set) also when the usage of strong
constraints would imply that there is no answer set.

Ezxample 2. In specific instances of EXAM-SCHEDULING, there could be no
way to assign courses to time slots without having some overlapping between
incompatible courses. However, in real life, one is often satisfied with an ap-
proximate solution, that is, one in which constraints are satisfied as much as
possible. In this light, the problem at hand can be restated as follows (APPROX-
SCHEDULING): “assign exams to time slots trying to not overlap incompatible
courses”. This can be expressed by the program P,.., using weak constraints:

r1: assign(X,tsy) vassign(X,tse) vassign(X,tss): - course(X).
wy i~ assign(X, S), assign(Y, S), incompatible(X,Y).

An informal reading of the above weak constraint w; is: “preferably, do not
assign the exams X and Y to the same time slot if they are incompatible”. Note
that the above two programs Py, and P, 4., have exactly the same answer sets if
all incompatible courses can be assigned to different time slots. However, when
Ps.n, has no answer set, P,s., provides answer sets corresponding to ways to
satisfy the problem constraints “as much as possible”.

The DLV language also supports aggregate atoms [14], allowing for repre-
senting in a simple and natural manner also properties that require the use
of arithmetic operators on (multi-)sets, often arising in real-world applications.
Aggregate atoms consist of an aggregation function (currently one of cardinal-
ity, sum, product, maximum, minimum), evaluated over a multiset of terms,
the content of which depend on the truth of non-aggregate atoms. The syntax
is L <1 F{Vars: Conj} <2 U where F is a function among #count, #min,
#max, #sum, and #times, <1, <2€ {=, <, <,>,>}, L and U are integers or
variables, called guards, and {Vars: Conj} is a symbolic set, which intuitively
represents the set of values for Vars for which the conjunction Conj is true.
For instance, the symbolic set {X,Y:a(X,Y, Z),not p(Y)} stands for the set of
pairs (X,Y) satisfying the conjunction a(X,Y, Z),not p(Y), ie., S = {(X,Y) |
3Z : a(X,Y) Anot p(Y) is true}. When evaluating an aggregate function over
it, the projection on the first elements of the pairs is considered, which yields
a multiset in general. The value yielded by the function evaluation is compared
against the guards, determining the truth value of the aggregate.

Ezxample 3. Consider, for instance, a TEAM-BUILDING problem, where a project
team has to be built according to the following specifications:

(p1) The team consists of a certain number of employees.

(p2) At least a given number of different skills must be present in the team.
(p3) The sum of the salaries of the employees working in the team must not
exceed the given budget.

p4) The salary of each individual employee is within a specified limit.

(p5) The team must include at least a given number of female employees.

Information on the employees is provided by a number of facts of the form
emp(Empld, Sex, Skill, Salary). The size of the team, the minimum number of
different skills in the team, the budget, the maximum salary, and the minimum
number of female employees are given by facts nEmp(N), nSkill(N), budget(B),
maxSal(M), and women(W). We then encode each property p; above by an
aggregate atom A;, and enforce it by an integrity constraint containing not A;.

r1: an(I)vout(I):-emp(l, Sz, Sk, Sa).

s1: :=nEmp(N),not #count{Il : in(I)} = N.

S92 ¢ :=nSkill(M),not #count{Sk : emp(I, Sz, Sk, Sa),in(I)}
sg: :=budget(B),not #sum{Sa,I : emp(l, Sz, Sk,Sa),in(I)}
sq 1 :=maxSal(M),not #max{Sa : emp(I, Sz, Sk, Sa),in(I)}
s5 1 :—women(W),not #count{I : emp(I, f, Sk, Sa),in(I)} > VV.

Intuitively, 71 “guesses” whether an employee is included in the team or not,
while each constraint si-s5 corresponds one-to-one to a requirement pi-ps.

> M
<B
<M

4 Basic Grounding Methods

All currently competitive ASP systems mimic the definition of the semantics as
given in Section 3 by first creating a ground program without variables. This
phase is usually referred to as grounding or instantiation. The program created
is usually a subset of the ground program as defined in Section 3. Still, this
task is computationally expensive (see [11,9]), and its efficiency is important for
the performance of the entire system. Indeed, the grounding frequently forms a
bottleneck and is crucial in real-world applications involving large input data.
In this Section we give a general description of the DLV grounder. We first
describe the algorithm for instantiating programs of the DLV core language and
then briefly discuss the linguistic extensions. Note that the DLV core language
also permits function symbols, which can imply non-termination of the instantia-
tion. We hence examine finitely-ground programs [5] for which the DLV grounder
is guaranteed to terminate and explain how to identify programs of this class.

4.1 Dependency and Component Graphs

Given an input program P, the DLV grounder creates a subset of Ground(P),
whose ground rules only contain literals that can potentially become true. To this
end, structural information of the input program is analyzed. The Dependency
Graph of a program P is a directed graph Gp = (N, E), where N is the set of
IDB predicates of P, and F contains an arc (p, ¢) if there is a rule r in P such

P

t s {s}
Gp G%
Fig. 1. Dependency and Component Graphs.

that g occurs in the head of r and p occurs in a positive literal of the body of r.
The graph Gp induces a partition of P into subprograms (also called modules)
allowing for a modular evaluation: For each strongly connected component (SCC)
C of Gp (a set of predicates), the set of rules defining the predicates in C' is
called module of C' and is denoted by P¢. A rule r occurring in a module P¢
(i.e., defining some predicate g € C) is said to be recursive if there is a predicate
p € C in the positive body of r; otherwise, r is said to be an exit rule.

Ezample 4. Consider the following program P, where a is an EDB predicate:

a(g(1)). UX, f(Y)):=p(X,Y),a(Y). p(g9(X),Y)Vs(Y):=r(X),r(Y).
p(X,Y):-r(X),t(X,Y). r(X):-a(g(X)),not t(X, f(X)).

Graph Gp is illustrated in Figure 1; the strongly connected components of Gp
are {s}, {r} and {p,t}. They correspond to the three following modules:

Pisy ={p(9(X),Y) VvV s(Y):=r(X),r(Y). }

Py ={r(X):-a(g(X)), not ¢(X, f(X)). }

P{p,t} = {p(g(X),Y) \ S(Y) I-T(X),T“(Y). p(Xv Y) :_T(X)at(va)'
HX, f(Y)):=p(X,Y),a(Y). }

Moreover, Py, and Py, do not contain recursive rules, while Py, ;3 contains
one exit rule (p(g(X),Y) Vs(Y):-r(X),r(Y).) and two recursive rules.

The Component Graph of a program P is a directed labeled graph G% =
(N, E,lab), where N is the set of strongly connected components of Gp, and E
contains an arc (B, A) with lab((B, A)) =“+7, if there is a rule r in P such that
q € A occurs in the head of r and p € B occurs in a positive literal of the body
of r, and F contains an arc (B, A), with lab((B, A)) =“-", if there is a rule r in
P such that ¢ € A occurs in the head of r and p € B occurs in a negative literal
of the body of r, and there is no arc ¢’ in E, with lab(e') =“+7.

The Component Graph induces a partial ordering among the SCCs of the
Dependency Graph as follows. For any pair of nodes A, B of G%, A positively
precedes B in G% (denoted A<, B) if there is a path in G% from A to B in
which all arcs are labeled with “+7; A negatively precedes B (denoted A<_B),
if there is a path in G% from A to B in which at least one arc is labeled with
“-”_ This ordering induces admissible component sequences C1,...,C, of SCCs
of G'p such that for each i < j, i) C; 4+ C;; ii) if C;<_C; then there is a cycle in
G% from C; to Cj(i.e. either C;<C; or C;<_Cj). Several such sequences exist
in general.

Ezample 5. Given the program P of Example 4 its Component Graph is illus-
trated in Figure 1. It easy to see that {r}<,{p,t}, {r}<+{s}, while {p,t}<_{r}
and {p,t}<_{s}. An admissible component sequence would be {r}, {p,t}, {s}.

Intuitively, this ordering allows incremental grounding, one module at a time.
If a module A positively precedes a module B then A must be evaluated before
B. If A negatively precedes B then A should be possibly evaluated before B.
Negative precedences are only overridden for unstratified components.

4.2 Instantiation Procedure

The procedure Instantiate shown in Figure 2 takes as input both a program P to
be instantiated and the Component Graph G%, and outputs a set II of ground
rules containing only atoms which can possibly be derived from P, such that
ANS(P) = ANS(IT U EDB(P)). As already pointed out, the input program
P is divided into modules corresponding to the nodes of G%(i.e. the SCCs of
the Dependency Graph Gp), and these modules are evaluated one at a time
following an admissible component sequence.

The algorithm keeps a set of significant atoms S, a subset of the Herbrand
Base, such that instantiated rules contain only atoms from S. Initially, S =
EDB(P), and II =). Then, an admissible component sequence (C1,...,C,) is
created, and each module corresponding to C; is grounded by invoking Instan-
tiateModule. Instantiate runs until all components have been considered.

Procedure InstantiateModule handles the grounding of one module. Its in-
puts are the component C' to be grounded and S, and it computes those ground
instances for each r in the module for C' that contain only atoms from S. It
also updates the set S with the atoms occurring in the heads of rules in I7. The
grounding of single rules is handled by the procedure Instantiate Rule: Given the
set of atoms that are known to be significant up to now, it builds all the signif-
icant ground instances of r, adds them to II, and adds the head atoms of the
newly generated ground rules to the significant ones. The evaluation of r is es-
sentially performed by evaluating the relational join of the positive body literals.
Since the rule is safe, each variable occurring either in a negative literal or in the
head of the rule appears also in some positive body literal, thus the instantiation
of positive literals implies that all rule variables have been instantiated (details
about this procedure can be found in [34]). Moreover, before being added to I,
each ground rule is simplified by removing from the body those (positive and
negative) literals which are already known to be true. Those rules whose head
is already true, or where a negative body literal is already known to be false are
not added to II. This mechanism will be described in detail in Section 4.3.

Note that a disjunctive rule r may appear in the program modules of two
different components. Thus, before processing r, Instantiate Rule checks whether
it has been already grounded during the instantiation of another component.
This ensures that a rule is actually processed only within one program module.

Recursive rules are processed several times using a variant of the semi-naive
evaluation technique [39], in which at each iteration n only the significant infor-
mation derived during iteration n—1 is used. This is implemented by partitioning

Procedure Instantiate(P: Program; G%: ComponentGraph; var II: GroundProgram)
var S: SetOfAtoms, (C1,...,Cy): List of nodes of G%;
S =EDB(P); II :=0;
(C1,...,Cr) := OrderedNodes(G%); /* admissible component sequence */
for i =1 ...n do InstantiateModule(P,C;, S, IT);

Procedure InstantiateModule (P: Program; C: SetOfPredicates;
var S: SetOfAtoms; var I1: GroundProgram)
var N'S: SetOfAtoms, AS: SetOfAtoms;
NS :=0; AS =0
for each r € Ezit(C,P) do InstantiateRule(r, S, AS,N'S, II);

do
AS :=NS; NS =0
for each r € Recursive(C,P) do InstantiateRule(r, S, AS,N'S, IT);
S:=SUAS;

while NS # ()

Procedure InstantiateRule(r: rule; S: SetOfAtoms; AS: SetOfAtoms;
var N'S: SetOfAtoms; var II: GroundProgram)
/* Given S and AS builds the ground instances of v, simplifies them (see Sec. 4.3),
adds them to II, and add to N'S the head atoms of the generated ground rules. */

Fig. 2. The DLV Instantiation Procedure.

the significant atoms into three sets: AS, S, and N'S. N'S is filled with atoms
computed during the current iteration (say n); AS contains atoms computed
during the previous iteration (say n — 1); and S contains those computed ear-
lier (up to iteration n — 2). Initially, AS and N'S are empty, and the exit rules
contained in the program module of C' are evaluated by a single call to proce-
dure InstantiateRule; then, the recursive rules are evaluated (do-while loop). At
the beginning of each iteration, NS is assigned to AS, i.e. the new informa-
tion derived during iteration n is considered as the significant information for
iteration n + 1. Then, InstantiateRule is invoked for each recursive rule r, and,
at the end of each iteration, AS is added to S (since it has already been dealt
with). The procedure stops whenever no new information has been derived (i.e.
NS = (). Intuitively, the instantiation procedure of DLV allows for dynamically
computing extensions of predicates; head atoms resulting from a rule instantia-
tion immediately become members of the domains for the next iteration, even
during the instantiation of the same recursive component.

Note that the algorithm described here does not take into account strong
constraints, since they do not belong to any module of the input. Since their
evaluation does not produce new significant atoms to be added to S, they are
processed when the instantiation of all program modules has terminated, by
means of a simplified version of procedure Instantiate Rule for which sets AS and
NS are useless. We remark that, as ground rules, also ground constraints are
simplified, possibly resulting in constraints with empty body, and thus violated.
In this case the computation is aborted since the input program is inconsistent.

It can be proved that the ground program generated by the DLV instantia-
tion algorithm has the same answer sets as the non ground input program.

Proposition 1. Let P be an ASP program, and II be the ground program gen-
erated by the algorithm Instantiate. Then ANS(P) = ANS(IIUEDB(P)) (i.e.
P and IT U EDB(P) have the same answer sets). O

The proof is a generalization of the one provided in [13] for function-free pro-
grams and is omitted for space reasons.

4.3 Instance Simplifications

Each ground rule generated by procedure InstantiateRule is examined and pos-
sibly simplified or even eliminated. In particular, body literals (positive and
negative ones) which are already known to be true can be dropped. Moreover,
since InstantiateRule computes variable substitutions by considering only posi-
tive body variables (sufficient because of safety), it may occur that some negative
literal in the created rule instance is already known to be false. In this case the
rule instance is already satisfied and need not be considered further.

For formalising these ideas, we partition the set S of significant ground atoms
into two subsets: ST, containing those significant ground atoms that are already
known to be true, and ST containing those significant ground atoms that
can become true (“potentially true”). ST is initialized with the input facts and
then extended by those heads of instantiated rules which have been transformed
into facts once the simplification below has been applied (essentially when all
positive atoms are in ST and all negative literals are known to be true as well).
The heads of all other instantiated rules belong to ST (essentially all atoms
from disjunctive heads and rules in which the body is not known to be true yet).

Once a rule instance R is generated, the following actions are carried out for
simplifying the program: i) if a positive literal Q@ € BT (R) and Q € ST, then
delete @ from B(R); ii) if a negative body literal not @ over predicate ¢ is in
B(R), @Q ¢ S, and all the rules defining ¢ have been already instantiated, then
delete not @ from B(R); iii) if a negative body literal not @ is in B(R) and
Q € ST, then remove the ground instance R.

Note that, while for positive literals it suffices to check whether it is in ST
for deciding its truth, for negative literals it is not sufficient to check whether
its atom is not in S, but it should also not be added later. In case the input
program is non-disjunctive and stratified,the modular evaluation (which respects
the ordering previously described) together with the simplification above, allows
the DLV grounder for completely evaluating the program.

To formalize this, we say that a literal with predicate ¢ is solved if (i) q is
defined solely by non-disjunctive rules (i.e., all rules with ¢ in the head are non-
disjunctive), and (ii) ¢ does not depend (even transitively) on any unstratified
predicate [3] or disjunctive predicate (i.e., a predicate defined by a disjunctive
rule). The component ordering obtained by the Component Graph ensures that
when a rule with a solved body predicate ¢ is instantiated, the rules defining
q have been instantiated previously; thus the extension of ¢ has already been

determined and, moreover, it completely belongs to the S” component of S. That
is, the truth values of all ground literals that are instances of solved predicates
are fully determined by the instantiator.

It follows that, after the simplification, none of the solved predicates occur in
the rules of the ground instantiation IT produced by the instantiator; rather, all
the predicates occurring in the rules of IT will be not solved and will be evaluated
during the answer set search phase. In case the input program is non-disjunctive
and stratified, all predicates are solved; thus all generated rule instances are
either simplified to facts and added to ST or deleted. The program has a single
answer set, coinciding with the set S7.

4.4 Dealing with Weak Constraints and Aggregates

We now provide an overview of how the instantiation process handles the two
major linguistic extensions, aggregates and weak constraints.

Concerning aggregates, in the following we suppose that programs respect
aggregate stratification as defined in [14], which intuitively forbids recursion
through aggregates. As previously described, the instantiation proceeds bottom-
up following the dependencies among predicates. In the presence of aggregates,
admissible component sequences must also conform with the aggregate stratifi-
cation. Then, the instantiation of a rule with aggregates is performed by first
evaluating non-aggregate body literals, and then applying variable substitutions
to aggregates.

In more detail, let r be the rule H:- B,aggr., where H is the head of the
rule, B is the conjunction of the non-aggregate body literals, and aggr is an
aggregate literal over a symbolic set { Vars:Conj}. A variable appearing in r is
said to be local if it appears solely in aggr, otherwise it is said to be global. The
instantiation of r proceeds by first evaluating the instantiation of the literals in
B, thus computing a substitution 6 for the global variables of C'onj. Then, the
(partially bound) conjunction 6(Conj) is instantiated by using the extensions
of predicates appearing in Conj (since the instantiation process respects also
aggregate stratification, all extensions are already available). Thus, a set of pairs
{(01(Vars) : 61(68(Conj))),...,(0,(Vars) : 0,,((Conj))) Hs generated, where each
0; is a possible substitution for the local variables in 6(Conj).

Note that, similar to rule simplification, we materialize only those pairs whose
truth value cannot be determined yet (that is, instances of unsolved literals)
and process the others dynamically, (partially) evaluating the aggregate already
during instantiation. The same process is repeated for all further substitutions
of the literals in B.

Instantiation of weak constraints, similar to that of strong contraints, is per-
formed after the evaluation of all rules, basically computing the relational join
of literals and simplifying the produced ground weak constraints as described in
Section 4.3. Note that for a weak constraint also a weight and a level could be
specified, each of them can either be an integer or a variable. In case of variables,
the instantiation of the body literals also provides a substitution for them. Note

also that the body of a weak constraint could become empty after the simplifi-
cation step, just like for strong constraints. This means that the weak constraint
is unconditionally violated, but differently from strong constraints this does not
cause the program to be inconsistent, but only causes the penalty of this weak
constraint to be present for each answer set. Therefore the violated weak con-
straint is stored in a dedicated structure in order to be treated later on when
computing the costs of each answer set.

4.5 Finitely Ground Programs

The presence of recursive function symbols within DLV programs has a strong
impact on the grounding process, which might even not terminate. All com-
mon reasoning tasks on such programs are indeed undecidable, in the general
case. Despite this, the DLV instantiation procedure does allow for dealing with
recursive function symbols, and it is guaranteed to terminate on the class of
finitely-ground (FG) programs defined in [5]. Intuitively, for each program P
in this class, there exists a finite ground program P’ having exactly the same
answer sets as P. P’ is computable for FG programs, thus answer sets of P
are computable as well. Moreover, each computable function can be expressed
by a FG program. Since FG programs express any computable function, mem-
bership in this class is obviously not decidable, but it has been proved to be
semi-decidable [5].

FG programs are defined by exploiting the fix-point #> of an operator & 2
that acts on a module of a program P in order to: (i) select only those ground
rules whose positive body is contained in a set of ground atoms consisting of
the heads of a given set of rules; (ii) perform further simplifications by deleting
all those rules whose body is certainly false or whose head is certainly already
true w.r.t. a given set of ground atoms A, and simplifies the remaining rules by
removing from the bodies all literals that are true w.r.t. A. The proper composi-
tion of consecutive applications of @>° to all program modules according to one
admissible component sequence v (that is, an ordering which respects depen-
dencies induced by the Component Graph) produces an instantiation I, (P) of
‘P which drops many useless rules w.r.t. answer sets computation. The program
P is finitely-ground if I,(P) is finite for every admissible component ordering 7.

The way in which the instantiation I,(P) is computed has a number of
relevant similarities with the DLV instantiation approach. First of all, the ap-
plication of the operator @ is performed by considering the components of the
Dependency Graph one at a time and following one of the orderings induced by
the Component Graph, exactly as in the case of the bottom-up evaluation per-
formed by the DLV instantiator. Moreover, for every component C', the ground
rules produced by the application of @ only contain ground atoms appearing in
the heads of ground rules produced by the evaluation of the previous modules. In
the DLV approach this corresponds to the use of the set S of ground atoms sig-
nificant for the instantiation (see the algorithm in Figure 2). The operator ¢ also

? For details we refer the reader to [5].

performs a simplification on the produced ground rules (which possibly become
new facts) by taking into account facts and ground rules previously determined,
similarly to the simplification performed by DLV described in Section 4.3. This
gives the intuition that the ground program produced by DLV coincides with
the instantiation I, (P) if v is the ordering exploited by DLV. However, in some
cases, the DLV instantiation can be actually smaller than I,(P). Indeed, in
case of components with recursive rules, the computation of ®>° simulates the
semi-naive approach of DLV, in which head atoms resulting from a rule in-
stantiation immediately become members of the domains for the next iteration;
but the simplification step applied by @ only considers information coming from
previous components, while the DLV simplification also considers information
derived during the evaluation of the current component, in previous iterations.
Summarizing, the ground program II generated by the algorithm Instantiate,
according to a component ordering v, is not bigger than I, (P). Hence, if I, (P)
is finite, IT is finite as well, thus proving the following result.

Proposition 2. Let P be a DLV program, and II be the ground program gen-
erated by the algorithm Instantiate. Then, if P is a FG program, II is finite. O

Note that for applications in which termination needs to be guaranteed a
priori, the DLV grounder has been endowed with a checker which allows the
user to statically recognize if the input program belongs to a class for which the
grounding process terminates, the class of argument-restricted programs [28].
However, if the user is confident that the program can be grounded in finite time,
even if it does not belong to the class of argument-restricted programs, then she
can disable the checker by specifying a command-line option. Moreover, the DLV
grounder provides another way for guaranteeing termination: the possibility to
specify, by means of another command-line option, the maximum allowed nesting
level for functional terms.

5 Optimization Techniques

Much effort has been spent on sophisticated algorithms and optimization tech-
niques aimed at improving the performance of the DLV instantiator. In the fol-
lowing we briefly recall the most relevant ones, providing references to detailed
descriptions of the respective techniques.

Some of the techniques exploited for optimizing the instantiation procedure
descend from the database field. For instance, the DLV instantiator implements
a program rewriting [12] strategy descending from query optimization tech-
niques in relational algebra. According to this technique, program rules are au-
tomatically rewritten by pushing projections and selections down the execution
tree as much as possible; this allows for reducing in many cases the size of the
program instantiation. Another rewriting-based optimization technique used in
DLV are dynamic magic sets [1], an extension of the Magic Sets technique
originally defined for standard Datalog for optimizing query answering over logic
programs. The Magic Sets technique rewrites the input program for identifying

a subset of the program instantiation which is sufficient for answering the query.
The restriction of the instantiation is obtained by means of additional “magic”
predicates, whose extensions represent relevant atoms w.r.t. the query. Dynamic
Magic Sets, specifically conceived for disjunctive programs, inherit the benefits
provided by standard magic sets and additionally allow for exploiting the in-
formation provided by the magic predicates also during the nondeterministic
answer set, search.

Another group of techniques descending from databases concerns the instan-
tiation process of each rule of the program. In particular, since rule instantiation
is essentially performed by evaluating the relational join of the positive body
literals, an optimal ordering of literals in the body is a key issue for the effi-
ciency of the instantiation procedure, just like for join computation. Indeed, a
good ordering may dramatically affect the overall instantiation time. The DLV
instantiator exploits a well-motivated body reordering criterion [26], which
determines the position in the body of each literal by taking into account two
factors: one is a measure of how much the choice of a literal L reduces the search
space for possible substitutions and the other takes into account the binding of
the variables of L (since preferring literals with already bound variables, possible
inconsistencies may be detected quickly).

Moreover, to guarantee good performance also in case of problems with huge
amount of input data, the DLV instantiator exploits an efficient main-memory
indexing technique [8]. In particular, it implements a kind of on demand in-
dexing, where a generic argument can be indexed (not necessarily the first one),
and indices are computed during the evaluation and only if they can really be
exploited. Moreover, the argument to be indexed is not predetermined, but is
established during the computation according to a heuristic. For optimizing the
rule instantiation task, a backjumping algorithm [34] is employed. In particu-
lar, given a rule r to be grounded, this algorithm exploits both the semantical and
the structural information about r for computing efficiently the ground instances
of r, avoiding the generation of “useless” rules. That is, from each rule only a
relevant subset of its ground instances are computed, avoiding the generation of
“useless” instances, but fully preserving the semantic of the program.

In the last few years,in order to make use of modern multi-core/multi-processor
computers, a parallel version of the DLV instantiator has been realized, based
on a number of strategies [7,33] specifically conceived for the instantiation task.
More in detail, the parallel instantiator is based on three levels of parallelism:
components, rules and single rule level. The first level allows for instantiating in
parallel subprograms of the program in input: it is especially useful when han-
dling programs containing parts that are, somehow, independent. The second
one allows for the parallel evaluation of rules within a given subprogram: it is
useful when the number of rules in the subprograms is large. The third one al-
lows for the parallel evaluation of a single rule: it is crucial for the parallelization
of programs with few rules, where the first two levels are almost not applica-
ble. Moreover, the parallel instantiator is endowed with mechanisms for dealing
with two important issues that may strongly affect the performance of a real

implementation: load balancing and granularity control. Indeed, if the workload
is not uniformly distributed to the available processors then the benefits of par-
allelization are not fully obtained; moreover, if the amount of work assigned to
each parallel processing unit is too small then the (unavoidable) overheads due
to creation and scheduling of parallel tasks might overcome the advantages of
parallel evaluation.

6 Related Work

In this section we briefly discuss some of the main differences and similarities of
the DLV Intelligent Grounder with respect to the other two most popular ASP
instantiators, namely, lparse [31], and gringo [17].

Concerning lparse, it accepts a different class of input programs, and follows
different strategies for the computation. Indeed, Iparse accepts logic programs
respecting domain restrictions. This condition enforces each variable in a rule
to occur in a positive body literal, called domain literal, which (i) is not mutu-
ally recursive with the head, and (ii) is neither unstratified nor dependent (also
transitively) on an unstratified literal. For instance, the program consisting of
rules P = {a(X) :-b(X),c(X). b(X):-a(X).}is not accepted by lparse. To in-
stantiate a rule r, Iparse employs a nested loop that scans the extensions of the
domain predicates occurring in the body of r, and generates ground instances
accordingly. It is therefore a comparatively simple and fast instantiation method,
at least for applications with few domains or for domains with small extensions.
However, lparse may generate useless rules as they may contain non-domain
body literals that are not derivable by the program. The DLV instantiator in-
corporates several database optimization techniques and builds the domains dy-
namically, hence the instantiation generated by DLV is generally a subset of
that generated by Iparse. Thus, in case of applications where the size of domain
extensions are very large (as in many industrial applications), lparse may take
significantly more time and produce a larger instantiation than DLV.

Concerning gringo, versions up to 3.0 also accepted only domain restricted
programs; however, the notion of domain literal was an extension of that of
Iparse, so gringo could handle all the programs accepted by lparse but not vice
versa. For example, program Pabove was accepted by gringo, while the fol-
lowing one, encoding reachability, could not be handled prior to version 3.0:
{r(X,Y):—arc(X,Y). r(X,Y):—arce(X,U),r(U,Y).}. The current gringo re-
leases (since version 3.0) removed domain restrictions and instead requirespro-
grams to be safe as in DLV, and evaluate them according to a grounding al-
gorithm based on the semi-naive schema, very similar to the one in the DLV
instantiator. It is worth noting that, passing from domain restrictedness to the
more general notion of safety, also the gringo grounding process may not termi-
nate, just like for DLV. However, while gringo leaves the responsibility to check
whether the input program has a finite grounding to the user, DLV implements
some checks for guaranteeing termination (see Section 4.5), and the user can
choose to disable them.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Alviano, M., Faber, W.: Dynamic Magic Sets and super-coherent answer set pro-

grams. Al Communications 24(2), 125-145 (2011)

Anger, C., Konczak, K., Linke, T.: NoMoRe: A System for Non-Monotonic Reason-
ing. In: Eiter, T., Faber, W., Truszczynski, M. (eds.) LPNMR’01. LNAI, vol. 2173,
pp. 406-410. (Sep 2001)

Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge.
In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming,
pp. 89-148. Washington DC (1988)

Calimeri, F., Cozza, S., lanni, G.: External sources of knowledge and value inven-
tion in logic programming. AMAI 50(3-4), 333-361 (2007)

Calimeri, F., Cozza, S., lanni, G., Leone, N.: Computable Functions in ASP: The-
ory and Implementation. In: ICLP 2008. vol. 5366, pp. 407-424. (Dec 2008)
Calimeri, F., Tanni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., Cozza, S.,
Faber, W., Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S.,
Reale, K., Santoro, M., Sirianni, M., Terracina, G., Veltri, P.: The Third Answer
Set Programming Competition: Preliminary Report of the System Competition
Track. In: LPNMR 2011, pp. 388—403 (2011)

Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instanti-
ation of ASP Programs. J. Of Algorithms 63(1-3), 34—54 (2008)

Catalano, G., Leone, N.; Perri, S.: On demand indexing techniques for the dlv
instantiator. In: Proceedings of the Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP’08). Udine, Italy (2008)

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys 33(3), 374425 (2001)
Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The second
answer set programming competition. LPNMR 2009. LNCS 5753, pp. 637-654
(2009)

Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364—
418 (Sep 1997)

Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization
Techniques for Nonmonotonic Reasoning. In: INAP Organizing Committee (ed.)
DDLP’99. pp. 135-139. Prolog Association of Japan (Sep 1999)

Faber, W., Leone, N., Perri, S., Pfeifer, G.: Efficient Instantiation of Disjunctive
Databases. Tech. Rep. DBAI-TR-~2001-44, TU Wien, Austria (Nov 2001), online
at http://www.dbai.tuwien.ac.at/local /reports/dbai-tr-2001-44.pdf

Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implemen-
tation of aggregate functions in the dlv system. TPLP 8(5-6), 545-580 (2008)
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: IJCAI 2007. pp. 386-392.(Jan 2007)

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczynski,
M.: The first answer set programming system competition. In: Baral, C., Brewka,
G., Schlipf, J. (eds.) LPNMR’07. LNAT 4483, pp. 3-17. (2007)

Gebser, M., Schaub, T., Thiele, S.: Gringo : A new grounder for answer set pro-
gramming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR’07. LNAI 4483, pp
266-271. (2007)

Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: ICLP/SLP 1988. pp. 1070-1080. MIT Press, Cambridge, Mass. (1988)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. NGC 9, 365-385 (1991)

Grasso, G., liritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An asp-based
system for team-building in the gioia-tauro seaport. In: PADL 2010. LNCS 5937,
pp. 40-42. (2010)

Grasso, G., liritano, S., Leone, N., Ricca, F.: Some DLV Applications for Knowl-
edge Management. In: Erdem, E., Lin, F., Schaub, T. (eds.). LPNMR 2009. LNCS
5753, pp. 591-597. (2009)

Telpa, S.M., Iiritano, S., Leone, N., Ricca, F.: An ASP-Based System for e-Tourism.
In: Erdem, E., Lin, F., Schaub, T. (eds.). LPNMR 2009. LNCS 5753, pp. 368-381.
(2009)

Janhunen, T., Niemela, 1., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality
and Disjunctions in Stable Model Semantics. ACM TOCL 7(1), 1-37 (Jan 2006)
Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni,
G., Kalka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis,
W., Terracina, G.: The INFOMIX System for Advanced Integration of Incomplete
and Inconsistent Data. In: SIGMOD 2005. pp. 915-917. ACM Press (Jun 2005)
Leone, N., Lio, V., Terracina, G.: DLVPB: Adding Efficient Data Management
Features to ASP. In: Lifschitz, V., Niemeld, I. (eds.) LPNMR-7. LNAI 2923, pp.
341-345. (Jan 2004)

Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiators by Join-Ordering
Methods. In: Eiter, T., Faber, W., Truszczyriski, M. (eds.) LPNMR’01. LNAI 2173,
pp. 280-294. (Sep 2001)

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV System for Knowledge Representation and Reasoning. ACM TOCL 7(3),
499-562 (Jul 2006)

Lierler, Y., Lifschitz, V.: One More Decidable Class of Finitely Ground Programs.
In: ICLP 2009. LNCS 5649, pp. 489-493. (Jul 2009)

Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to
Non-tight Programs. In: Lifschitz, V., Niemel4, I. (eds.) LPNMR-~7. LNAI, vol.
2923, pp. 346-350. (Jan 2004)

Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Al 157(1-2), 115-137 (2004)

Syrjanen T (2002) Lparse 1.0 User’s Manual. http://www.tcs.hut.fi/Software/
smodels/lparse.ps.gz

Marek, V.W., Truszczynski, M.: Stable Models and an Alternative Logic Program-
ming Paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm — A 25-Year Perspective, pp. 375-398. (1999)
Perri, S., Ricca, F., Sirianni, M.: Parallel instantiation of ASP programs: techniques
and experiments. TPLP (2012)

Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV instantiator by
backjumping techniques. AMAT 51(2-4), 195-228 (2007)

Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: an ASP-based system for enterprise ontologies. Journal of Logic and Com-
putation (2009)

Ruffolo, M., Manna, M.: HiLeX: A System for Semantic Information Extraction
from Web Documents. ICEIS (Selected Papers). Lecture Notes in Business Infor-
mation Processing, vol. 3, pp. 194-209 (2008)

Rullo, P., Cumbo, C., Policicchio, V.L.: Learning rules with negation for text cat-
egorization. ACM Symposium on Applied Computing. pp. 409-416. ACM (2007)

38.

39.

Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. TPLP 8, 129-165 (2008)

Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer
Science Press (1989)

