Privacy Preservation Using Multi-Context Systems and
Default Logic

Jurgen DiX*, Wolfgang Fabér™, and V.S. Subrahmanién

! Department of Informatics
Clausthal University of Technology
38678 Clausthal, Germany

di x@ u- cl aust hal . de
2 Department of Mathematics
University of Calabria
87030 Rende (CS), Italy
wf @\f aber. com
3 Department of Computer Science
University of Maryland
College Park, MD 20742
vs@s. und. edu

Abstract. Preserving the privacy of sensitive data is one of the major challenges
the information society has to face. Traditional approaches focusedrastruc-
tures for identifying data which is to be kept private and for managingsscc
rights to these data. However, although these efforts are useful, thegtcdal-
dress an important aspect: While the sensitive data itself can be protéméd n
using these mechanisms, related data, which is deemed insensitive payse
be used tanfer sensitive data. This inference can be achieved by combining in-
sensitive data or by exploiting specific background knowledge of theadoof
discourse. In this paper, we present a general formalization of tbidegm and

two particular instantiations of it. The first supports query answering ansef
multi-context systems and hybrid knowledge bases, while the secondsdibow
query answering by using default logic.

1 Introduction

With the advent of the Internet and easy access to huge amotdéata, keeping sensi-
tive data private has become a priority for distributed infation systems. An example
area in which privacy is at stake are medical informationiesys.

Most databases have privacy mechanisms which are comjadyagimple. Often,
this boils down to keeping certain columns of the databaddem from certain types
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of users. There are many approaches dealing with formaliemtis kind of autho-
rization problem, and we refer to [24] and references in W@k, in which aspects of
the authorization problem in non-monotonic knowledge base discussed. What we
are interested in, however, is a somewhat different isSae: users infer private infor-
mation by only asking queries that do not involve such infdiom and then making
“common sense” inferences from the answers?

In this paper, we generalize an earlier definition of Brevacy Preservation Prob-
lem [10]. This definition imposed several restrictions on thalentying knowledge
bases. Most importantly, they had to be first-order thephesause in this way it is
easily possible to build a default theory around them. Inmew definition, we aim
at making as few assumptions about the involved knowledgesas possible. Essen-
tially we will use the terminology that has been introducedrhulti-context systems
by Brewka and Eiter in [7]: It only assumes the knowledge basdave an underlying
logic of some sort.

We will show that multi-context systems can be used for im@ating a system
that computes privacy preserving answers. Essentiallysgecontexts and bridge rules
that link contexts in order to determine whether an answaatés the privacy require-
ments of some user. An appealing aspect of this instantiafdhe general privacy
preservation framework is that efficient systems for reamgpwith multi-context sys-
tems are beginning to emerge [1], making privacy presergugry answering systems
feasible in practice. We will then consider a restrictioritad framework, which essen-
tially matches the definitions of [10], and review how defdogic can be used in order
to obtain a privacy preserving query answering system.

In the following, we first provide a general definition of thevacy preservation
problem in Section 2, which allows for heterogeneous kndgédebases. In Section 3
we show how to construct a multi-context system for comgudinswers for the general
privacy preservation problem. In Section 4 we show that &tng) of [10] is a special
case of the general framework and review how to solve thesiglgms by means of
default logic. We conclude with Section 5 and outline futenagk. This work elaborates
on earlier results presented in [10] and [12].

2 Privacy Preservation Problem

In this section, we provide a general formalization of thegay preservation problem,
P3 for short. This development is similar to the one in [5] andhscearlier work in
[23], with slightly modified terminology. We start with bastoncepts for describing
knowledge bases, using terminology of [7].

We consider dogic L as in [7] to be a triplg KB, BS;, ACC,) whereKB/,
is the set of well-formed knowledge basesiofeach of which is a set as wellRSy,
is the set of possible belief sets, aAlCC, is a functionKB; — 2BSt describing
the semantics of each knowledge base. In the following, whentioning knowledge
bases, we do not specify the underlying logic (and drop thsaipts fromKB, BS,
and ACQ): It can just be any logic in the sense just described. Maggdet the finite
setU contain one user ID for each user in the system under comgider By abuse of
language we use the notati®h= {u;, ..., uu}.



Definition 1 (main knowledge baseMKB). Themain knowledge bas®IKB is a
knowledge base of some lodic

The main knowledge base is the one that the users will be onggrsind around
which the privacy preservation mechanism must be impleeterfso the users will
query the main knowledge base, and the privacy preservatgmianism might prevent
certain answers to be disclosed. This mechanism foreseesdilability of a model of
each user’s knowledge. Thus, at any given instaringime, each uset, has some set
of background knowledgé his background knowledge may be elicited in many ways:
One such source is the set of all information disclosed tauer by the system. For
example, a hospital accountant may not be allowed to seenpaliagnoses, though she
may see billing information about them.

Definition 2 (user model).The functiolBK assigns to each userc U abackground
knowledge basBK' (u) for each timepoint. The functiorPriv assigns to each user
u € U a belief setPriv(u) that should be kept private.

Note that the various knowledge bases need not be of the sayice but for practical
reasons one would assume the belief sets to be homogeneshisuld be pointed out
that BK’(u) will usually not be the user's own knowledge base, but ragherodel of
the user’s knowledge, maintained by the information systéate thatBK" (u) varies
ast varies. For example, as the database discloses answeesusdi, the background
knowledge associated tomay increaselhroughout most of this paper, we assume that
t is fixed and we address the problem of preserving privacy atengimepointAs a
consequence, we usually wriB¥K (u) and drop the superscript

Example 1.Consider a small medical knowledge basedKB containing information
about the symptoms and diseases of some patients. Let thneldaige base describe
two predicatesymptom anddisease and let the following be its only belief S&feqks:

symptom(john, s1) symptom(jane, s1) disease(jane, aids)
symptom(john, s2) symptom(jane, s4) disease(john, cancer)
symptom(john, s3) disease(ed, polio)

Note thatMedKB could very well be just a database. Assume thditn andjane are
also users of the system and want to keep their diseasedeps@Priv(john) =
{disease(john, cancer)}, while Priv(jane) = {disease(jane, aids)}. Consider an-
other usencct (an accountant). This person may have the following baakggtdnowl-
edge bas®BK(acct) in the form of rules (so the underlying logic might be answedr s
programming).

disease(X, aids) + symptom(X, s1),symptom (X, s4)
disease( X, cancer) < symptom(X, s3), symptom(X, s3)

We now define the concepts of query and answer to a knowledsge bhe precise
notation of a query is not so important, only the definitioritefanswer is. So given a
main knowledge bas®IKB wrt. alogic L, we assume there is a 9gtconsisting of
all queries oveMKB.



Definition 3 (query and answer).We assume that there is a mapping which associates
to eachquery@ € Q, each knowledge base and each semantitsgit L, a belief set
of L. This belief set is referred to as th@swerto @ and is denoted bAns(Q).

Users pose a query to the main knowledge base, but the pgvasgrvation mecha-
nism should allow only answers which do not violate the pywspecifications of users
after taking into account, the (presumed) knowledge of e asking the query.

Definition 4 ((maximal) privacy preserving answer).A privacy preserving answeo
a query@ overMKB posed by, € U with respecttdBK andPrivis X C Ans(Q)
such that for allu € U \ {up} and for allp € Priv(u), if p ¢ ACC(BK(up)) then
p € ACC(X UBK(ugp)). Amaximal privacy preserving answira subset maximal
privacy preserving answer.

Note that here we assume that elements of belief sets candeel &l knowledge
bases, yielding again a knowledge base of the respective M are now ready to
formally define the central problem studied in this paper.

Definition 5 (privacy preservation problem). A privacy preservation problefm3 is

a tuple(MKB, U, BK, Priv, Q, u). Solutions of this problem are all the (maximal)
privacy preserving answers 1Q posed byu, over MKB with respect toBK and
Priv.

Example 2.Returning to ourMedKB example, posing the querisease(john, X),
we would get as an answer the defisease(john, cancer)}. Likewise, the answer
to the querysymptom(john, X) is the sef{symptom(john, s1), symptom(john, sz2),
symptom(john, s3)}.

We assumed that John and Jane want their diseases keptlyritdowever, the
accountant can violate John'’s privacy by asking the geynptom(john, X). The an-
swer thatucct would get from the system isymptom(john, s1), symptom(john, sq),
symptom(john, s3)}. However, recall that the accountant has some backgrounalkn
edge including the rule

disease(X, cancer) < symptom(X, s3), symptom (X, s3)
which, with the answer of the query, would allewct to infer disease(john, cancer).
Thus the privacy preserving answersymptom(john, X) are
Ansy = {symptom(john, s1),symptom(john, s2)}
Anse = {symptom(john, s1),symptom(john, s3)}

( )
( )
Ansz = {symptom(john, s1)
Ansy = {symptom(john, s3)

( )

¥

}
Anss = {symptom(john, s3)}
Ansg = 0

None of these answers allowact to infer the private knowledgdisease(john, cancer).
However, except for the answess.s; and Ansq, which are maximal, all answers yield



less information than could be disclosed without infrirggprivacy requirements. Any
system should also provide only one of these answers to #re hescause getting for
instance botns; and Ans, would again violate John’s privacy requirements.

In a practical system, upon disclosing an answer the syshemld update the re-
spective user's knowledge model in order to avoid privadiingements by repeated
querying. For example, when the system retumss; to useracct, it should mod-
ify BK(acct) in order to reflect the fact thatcct now knowssymptom(john, s1)
and symptom(john, s3), such that asking the same query again it is made sure that
symptom(john, s3) will not be disclosed tacct.

A related aspect is how the background knowledge base isndieted precisely.
We do not want to restrict the formalism by making any assionpn this issue, but
in practice this will be a system that is maintained dynathicand will derive from
both exogenous knowledge (for instance, information mlediby an administrator,
which may also be information on what knowledge bases a asattively using) and
endogenous knowledge (as in the example above, answelasgiddy the system to a
user in the past).

3 Solving Privacy Preservation Problems Using Multi-Contek
Systems and Hybrid Knowledge Bases

The definitions in Section 2 were already slightly gearedarals multi-context systems.
We recall that a multi-context system in the sense of [7] ispet(C1, . . ., C,,) where
for eachi (1 <i <n), C; = (L;, kb;, br;) whereL; is a logic,kb; is a knowledge base
of L; andbr; is a set ofL; bridge rules ove{ Ly, ..., L,}, where anL; bridge rule
over{Ly,...,L,}is aconstruct

s (ri:p1),...,(rj :pj),not (rj41 i Pjt1)s ..., 00t (T © Pm)

wherel < r; < n, p; is an element of a belief set fdr,, and, for eactkb € KB,,

kb U {s} € KB;. Such rules (without negation) were first introduced in [28d later
generalized to include negation (and much more) in [17] aadtalled “hybrid knowl-
edge bases” based on annotated IdGic the rest of this section, we use multi-construct
systems in our syntax simply because a choice has to be masigax.

The semantics of a multi-context system is defined by meaaquifibria. A belief
statefor a multi-context systertC, ..., C,,)is S = (S1, ..., S»), whereS; € BS; for
1 < ¢ < n. An L; bridge rule of the form above is applicable$hiff, for 1 < k < j,
pr € Sr, holds and, forj < k& < m, pr € S,, holds. Letapp(br, S) denote the
set of all bridge rules irbr which are applicable in a belief state A belief state
S = (S1,...,5,) is an equilibrium of a multi-context systet@1, ..., C,,) iff for all
1<i<n,S; € ACC;(kb; U{hd(r) | r € app(br;,S)}), wherehd(r) is the head of
a bridge ruler, viz. s in the bridge rule schema given above.

41n [22], the main difference in this syntax was that the p;'s were instead writtep; : ;.
[17] extended this to include not just “annotated” rules in the body, botrakny other con-
structs including references to non-logical data structures and sefinstead of just logics
L;. However, [7] allows non-atomic constructs in rule bodies. Thus, [@} tne viewed as a
generalization of [22] but not of [17].



Given aP3 (MKB, U, BK, Priv, Q,u), with U = {u4,...,uy|}, in order to
identify privacy preserving answers, we build a multi-ettsystemMp; = (Cy,
Cy, C3, Cy, ..., Cly|4+3), whereC, = (Lmks, MKB, ), C; = (Lmks, 0, br2),
C3 = (Lvxs, 0,br3), Cs = (LBK(uy), BK(u1),br4) ..., Clujysz = (LBK(uy)):
BK(uju)), brju|+3). Here Ly, is the logic of the knowledge basé. The meaning
is that C; provides just the belief sets favIKB (no bridge rules)C> and C; are
used to identify those belief sets which constitute privaoyserving answers, while
Cy, ..., Cluy|4+3 represent the user information, that is, the backgrounavledge base
of the querying user and the privacy requirements of theratbers. The important part
are the bridge rules, which we will describe next. In manyesag/e will create one rule
for each symbol that can occur in some belief sefAafs(Q), so for convenience let
D={p|pe B,Bc Ans(Q)}.

The setbr, contains one bridge rule <+ (1 : p),not (3 : p) for eachp € D.
Symmetrically,brs contains one bridge rule < (1 : p),not (2 : p) for eachp € D.
The intuition is that the belief sets @f; will be subsets of the belief set @f; in
any equilibrium, and hence potential privacy preservingwars.C5 exists only for
technical reasons.

For i such thatu;_» = u, thus for the context’; of the querying user, we add one
bridge rulep <+ (2 : p) for eachp € D. This means that in any equilibrium, the belief
set fori will contain all consequences of the privacy preservingaamsvith respect to
u's knowledge base.

For each where3 < i < |U|+3 such that:;_o» # u, thus for contexts representing
non-querying usergy; contains one bridge rule, < (j : p1),..., (5 : pi),not (7 :
p1) for u; = wand{ps,...,m} € Priv(u;_2). The idea is that no belief state can
be an equilibrium, in which the querying user derives infation whichu;_, wants to
keep private.

Note that the tuplgS, Sa, S3,S4, ..., Sjuj+3) was constructed in such a way,
that S> represents the potential privacy preserving answers. dllening proposition
shows that our construction does indeed reflect this.

Proposition 1. Given aP3 (MKB, U, BK, Priv, ), u), each equilibrium belief state

(S1,82,83,84,...,8u+3) for Mp3 is such thatS, is a privacy preserving answer

to P3. Also, each privacy preserving answgrto P3 is the second component of an
equilibrium for Mps3.

Example 3.In the example examined above, consider®3e(MedKB, {john, jane,
acct}, BK, Priv, symptom(john, X), acct). Note that we did not define background
knowledge bases for usefshn and jane, but their nature is not important for the
example, just assume that they exist. We also have not dedimggrivacy statement
for acct, but also this is not important for our example and we willumse that it

is empty, that isacct does not require anything to be kept private. We construct a
multi-context system(C1, Cs, Cs, Cy, Cs, Cs) whereC; = (Lmedks, MedKB, 0),

C2 = (Lmedks, 0, bro) with bridge rulesr, being

symptom(john, s1) < (1 : symptom(john, s1)),not (3 : symptom(john, s1))
symptom(john, s3) < (1 : symptom(john, s3)), not (3 : symptom(john, s2))
symptom(john, s3) < (1 : symptom(john, s3)),not (3 : symptom(john, s3))



thenCs3 = (Lmedks, 0, br3) with bridge ruleshrs being

symptom(john, s1) < (1 : symptom(john, s1)),not (2 : symptom(john, s1))
symptom(john, s2) < (1 : symptom(john, s3)), not (2 : symptom(john, sz))
symptom(john, s3) < (1 : symptom(john, s3)), not (2 : symptom(john, s3))

thenCy = (L (jonn), BK(john), bry) with bridge rulesr, being

disease(john, cancer) < (6 : disease(john, cancer)),not (4 : disease(john, cancer))
thenCs = (LK (jane), BK(jane), brs) with bridge rulesrs being

disease(jane, aids) « (6 : disease(jane, aids)),not (5 : disease(jane, aids)
and finallyCs = (LK (acct), BK (acct), brg) with bridge ruleshrs being

symptom(john, s1) < (2 : symptom(john, s1))

symptom(john, s2) < (2 : symptom(john, s3))
symptom(john, s3) < (2 : symptom(john, s3))
Mps has six equilibria
E1 = (SMedks, Ansi, Ans(symptom(john, X)) \ Ansy, Ans1,0,0)
E> = (SMedks, Ansz, Ans(symptom(john, X)) \ Ansa, Ansa, 0, 0)
E5 = (SMedks, Anss, Ans(symptom(john, X)) \ Anss, Anss, (0, 0)
Ey=( ( ( )\ Ansy, Ansy, 0,0)
E5 = (SMedks, Anss, Ans(symptom(john, X)) \ Anss, Anss, 0, 0)
Es = (SMedkBs, Ansg, Ans(symptom(john, X)) \ Ansg, Ansg, (), 0)

SMedkB, Ansy, Ans(symptom(john, X

whereSwedks iS as in Example 1 and the second belief set of déacis exactly the re-
spectiveAns; of Example 2 and the third belief set is the complementiak; with
respect toAns(symptom(john, X)) = {symptom(john,s1), symptom(john, s3),
symptom(john, s3)}.

We would like to point out that in this construction the origi knowledge bases are
not changed, we only create contexts and bridge rules. Atlmbackground knowledge
bases could be multi-context systems themselves; forioetdf the user model farcct
foresees thatcct is aware of SNOMED and PEPID, thenct’s background knowledge
base could be a multi-context system comprising these twdicakknowledge bases.

In order to obtain maximal privacy preserving answers ugieglescribed construc-
tion, the simplest way is to postprocess all privacy presgranswers. More involved
solutions would have to interfere with the underlying malintext system reasoner, for
instance by dynamically changing the multi-context systkns not clear to us at the
moment whether it is possible to modify the constructiorngihat the equilibria of the
obtained multi-context system correspond directly to treximal privacy preserving
answers.

We note that the “equilibria” in multi-context systems araitar to the non-monotonic
constructs in the prior “hybrid knowledge bases” work of][h@sed on annotated logic
and so the results of this section also show that hybrid kedge bases can be used to
encode privacy constructs. Hybrid knowledge bases weensixtely implemented and
used to build a very large number of applications on top dfaatabases [3].



4 Solving First-Order Privacy Preservation Problems Using
Default Logic

In this section, we show that the formalism in [10], calfedt-order privacy preserva-
tion problem is an instance of the formalism defined in Section 2.

4.1 First-Order Privacy Preservation Problems

For defining a first-order language (without equality), weLese the existence of some
finite set of constant symbols, function symbols and predisgmbols. As usual, a term
is inductively defined as follows: (i) Each constant is a tgfiijnEach variable is a term,
and (iii) if f is ann-ary predicate symbol ard, . .., t, are terms, therf(¢y,...,¢,)

is a term. Aground termis any term that contains no variable symbols. Similarly, if
p is ann-ary predicate symbol and, .. ., ¢,, are terms, thep(¢4, ..., ¢,) is an atom.

A ground atoms any atom that contains no variable symbols. A well formmaniula
(wff) is inductively defined as follows. (i) Every atom is afwfii) If F, G are wifs then

so are(F A G),(F Vv G) and—F. The semantics is given as usual (all formulae are
considered to be universally quantified, so we do not neeattoduce quantifiers).

Definition 6 (first-order privacy preservation problem). A first-order privacy preser-
vation problem(MKB, U, BK, Priv, Q,up) is a P3 in which MKB is a set of
ground atoms (also called logic database), e®K’(u) is a set of wifs, an®Priv(u)
is also a set of wifs, represented by its set of models.

Now, given a first-order privacy preservation probl@dKB, U, BK, Priv, Q, ug),
we define a translatiotnans, which produces a default logic theaty = (D, W) such
that there is a bijective correspondence between the spkitd the privacy preservation
problem and the extensions of the default theory (resttici¢he query) returned by the
translation [8]. The consequence of this translation i$ skendard (and well studied)
methods to evaluate default logic theories may be used &epre privacy effectively,
efficiently, and elegantly.

We refer to standard textbooks (e.g. [18, 6]) for an intrdiduncto default theories.
We denote defaults as usual Byc—b if a holds and it is consistent to assurb¢hen
concludec. Most of our defaults are supernormal, i.e. of the fquﬁ A default theory
is a pairA = (D, W) where the first component consists of the whole set of default
and the second is a set of formulae (the classical theory).

Definition 7 (trans).Let(MKB, U, BK, Priv, Q, ug) be afirst-order privacy preser-
vation problem. Theanslationtrans(MKB, U, BK, Priv, Q, u,) of a privacy preser-
vation problem into default logic is the default logic thgat = (D, W) where:

W = BK(U(]).

D:{:Tf|feMKB} U

(-5 | (3 U~ {w)) p & Priviu) and BK(uo) i ).



We now present an example to show how the result of transfwythie privacy preser-
vation problem into default logic looks like.

Example 4.Let us return to the case of the accountant. AssumeMeatKB of Ex-
ample 1 is a logic database, that the “rules'BK andPriv in Example 1 are wffs,
making the problem in the example a first-order privacy preg@on problem. In this
case,lW consists of the following two rules (which need to be writshightly differ-
ently so as to comply with the wff's as defined in the beginrohthis section):

symptom (X, s1) & symptom (X, s4) — disease(X, aids)
symptom(X, s2) & symptom (X, s3) — disease(X, cancer).

In addition, D consists of the following defaults:

: symptom(john,s;) : symptom(john,ss) : symptom(john,s3)
symptom(john,si) symptom(john,ss) symptom(john,ss)

: symptom(jane,s) : symptom(jane,sy)

symptom(jane,s1) symptom(jane,sy)

: disease(ed,polio) : disease(jane,aids) : disease(john,cancer)
disease(ed,polio) disease(jane,aids) disease(john,cancer)
disease(jane,aids) : disease(john,cancer) :

—disease(jane,aids) —disease(john,cancer)

Note that we are assuming here that Ed has not marked hisdias&eing a private
fact.

Our translation uses linear space. The time complexity®fridnslation depends on the
complexity of checking entailment. For example, assumifigige number of constants
in our language (reasonable) and assuming that all rulB&rare definite clauses (i.e.
clauses with exactly one atom), then the translation is é@mgintable in polynomial
time. But if BK consists of arbitrary first order formulas, then the tratisfacan take
exponential time.

We remind the reader of some basic terminology associatéddefault theories.
Given a defauld = % we use the notatiopre(d) to denotea, j(d) to denotes
and ¢(d) to denotey. In addition, given any default theomd = (D, W), we may
associate withA, a mappingl’s which maps sets of wffs to sets of wifS4(Y) =
CN(W U {pre(d) — ¢(d) | j(d) is consistent wittt"}). As usual, the functio€N(X)
denotes the set of all first order logical consequenceX ofA setY of wffs is an
extensiorof Aiff Y = I'x(Y).

We are now ready to present a key result linking the privaeg@rvation problem
to default logic extensions. Suppose we consider any priypaeservation problem.
The privacy preserving answers to that privacy presemagiioblem are in a one-one
correspondence with the consistent extensions of thelatéons (restricted to the query)
of the privacy preservation problem into default logic (sthe translatiotrans shown
in Definition 7).



Theorem 1. Suppose thaf) is an atom and thatMKB, U, BK, Priv, Q, ug) is a
first-order privacy preservation problem aricans(MKB, U, BK, Priv, Q, up) =
A = (D,W). Then:X is a solution to the above privacy preservation problenhiéire
is a consistent extensidii of A = (D, W) such thatX = {40 | A0 € E N MKB}.

In order to prove Theorem 1, we first formulate a useful absteanma.

Lemma 1. Let W, M KB and P be consistent sets of formulae IX. U M KB is
consistent as well. Labp = {25 : p e PyandDyxp = {5 : f € MKB}.

Then the consistent extensions of the thédry U D, x5, W) are the set&'n(WU
{f: f € F})whereF is asubset ol K B that is maximal wrt. set inclusion (i.e. there
is no larger setF” such thatV U {f : f € F'} = pforall p € P).

Proof. Clearly the set€n(W U{f : f € F'}) whereF is a maximal subset af/ K B
are extensions of the default theory: The default®in do not apply and we are left
with a supernormal default theory (the result follows fromknown characterizations
in default logic, see eg. [9, 18]).

Conversely, leE be a consistent extension. Then no defauinapplies. Because
extensions are grounded and we are dealing with a superhtivatay, £ must have
the formCn(W U {f : f € F}) for a subsef’ of MKB. BecauseF is maximal (no
other extension can contaif)), the seCn(W U{f : f € F})is maximal in the sense
defined in the lemma. O

Now we are able to prove Theorem 1:

Proof. The proof of Theorem 1 is an application of Lemma 1. Supp®¥ss a solution
to (MKB, U, BK, Priv, Q, uo) and lettrans(MKB, U, BK, Priv, Q,up) = A =

(D,W). Then we letF := X, W := BK(up) andP := {p : (Ju € U — {ug})

p € Priv(u) andBK(ug) ¥ p} and apply our lemma. The seétn(W U {f : f €

F'}) is an extension (it is maximal because of (3) and (2) in thendifh of a privacy
preserving answer).

Conversely let a consistent extensibrof trans(MKB, U, BK, Priv, Q, ug) be
given and consideX := {Qf | Q9 € E N MKB}. Our lemma implies thaX is a
subset of MKB that is maximal. Therefoc€ is also a privacy preserving answer (if
there were a largeK’ satisfying (2) in the definition of pp answer, théhwould not
be maximal and thus not be an extension). O

The preceding theorem applies atomic queries. A straightforward extension of
the above proof gives us the following corollary, which agplo arbitrary queries.

Corollary 1. Suppose thatMKB, U, BK, Priv, Q, uy) is a privacy preservation
problem and thatrans(MKB, U, BK, Priv, Q,uo) = (D,W). Then: X is a so-

lution to the above privacy preservation problem iff thex@iconsistent extensidn of

(D, W) suchthatX = {Q0 | Q6 € ENnMKB}.

In order to illustrate this theorem, we revisit the examplegey preservation prob-
lem and its default logic translation that we presentedezarl



Example 5.Let us return to theMedKB example. Consider the privacy preservation
problem of Example 1 and the default logic translation showExample 4. As seen in
Example 1, there are two privacy preserving answers to tioisiem. They are:

Ansl = {symptom(john, s1), symptom(john, s2)}
Ans2 = {symptom(john, s1),symptom(john, s3)}

The default logic translation of this privacy preservatmnblem shown in Example 4
has exactly four consistent extensidiis, . . . , Fy.

E1 = CN(W U {symptom(john, s1),symptom(john, s2),
symptom(jane, s1), disease(ed, polio) }
E; = CN(W U {symptom(john, s1),symptom(john, s3),
symptom(jane, s1), disease(ed, polio) }
Es = CN(W U {symptom(john, s1
symptom(jane, s4), disease(ed, polio) }
(
(

)
)
)
)
,symptom(john, s2),
: )
,symptom(john, s3),
)

)
)
Ey = CN(W U {symptom(john, s1)
)

symptom(jane, s4), disease(ed, polio) }

However, if we are only interested in answers to the qugrgptom(john, X) in
the above extensions, then the extensihsE, only contain{symptom(john, s1),
symptom(john, s2)} while Ey, E3 only contain{symptom(john, s1), symptom(john, s3)}.
These restrictions of the extensions are in a one-one gamegnce with the privacy
preserving answers to the query posed by the accountant.

4.2 Complexity of First-Order Privacy Preservation Problems

Computing a privacy-preserving answer typically invohgsessinga subset of an-
swers, and subsequently checking it with respect to pripaegervation and maximal-
ity. Intuitively, this computational task has a correspamck to common non-monotonic
reasoning tasks, because the maximality condition folapyiypreserving answers has
its counterpart the minimality conditions in non-monotoaemantics, while guessing
a model candidate and checking it on a set of formulae is eva® nlosely related.

It therefore does not come as a surprise that a non-mondtmiecneatly represents
the privacy preservation problem. Concerning the compleatialysis, we can indeed
leverage the translatiamans to use well-known results concerning the complexity of
default logic in order to prove membership of various sutsds of first-order privacy
preservation problems.

As already shown in [19], default reasoning involving fuantsymbols is unde-
cidable. Note that computing maximal privacy preservingvears involves checking
BK(ug) £ p, which is clearly undecidable for arbitrary first-orderrfarlae. We will
therefore focus on decidable fragments. In particular, Weassume in our analysis
below that problems are restricted to those for which deg@K = p, p € Priv
is feasible in polynomial time. We will focus on theories ilDatalog setting, the data
complexity (we consider onliMIKB, i.e. the knowledge base, as inpBiI andPriv
are fixed) of which corresponds to propositional defaulothes.



Then, membership can be seen by virtué¢rahs and the form of formulae iBK
and Priv. In particular, brave reasoning for non-disjunctive défdueories is NP-
complete (see e.g. [16, 20] for such classes), while braagoréng for arbitrary default
theories is¥’’-complete, see [14] and [21].

We thus consider first-order privacy preservation problerits the following re-
strictions:

1. We varyBK(u) to be an arbitrary theory (without syntactic retrictiona)non-
disjunctive theory (as in [16, 20]), and a set of facts (a themntaining only
ground atoms).

2. We varyPriv(u) to be a set of arbitrary formulas, a non-disjunctive theang a
set of facts.

Table 1 summarizes our results on the complexity of privagservation in the
Datalog case.

[Priv/BK [Fact$Non-disjunctivéArbitrary|
Facts P P xr
Non-disjunctive] NP NP xr
Arbitrary oy r 2y

Table 1. Data Complexity of First-Order Privacy Preservation Problems

Theorem 2. The data complexity for first-order privacy preservatiomigems with-
out function symbols under various syntactic restrictians as reported in Table 1.
Completeness holds fofP and £1 results.

Next, we will prove some of the hardness results.

Corollary 2. First-order privacy preservation problems wiBIK containing non-disjunctive
rules andPriv made of facts is hard fdiP.

Proof. We show NP-hardness by a reduction from 3SAT to a first-ordeaqy preser-
vation problem in whiclBK () contains only rules with negation &\iKB predicates
and in whichPriv contains only one fact: Givena CNF= A"_, L;1 V L; 2 V L; 3,
we create a3 with MKB = {¢; | ¢;isanatominp} U {q}, two usersug, u1,
BK(ug) = {Li; A Liy N L 3 — unsat}, where(-z)" = z andz’ = —z. Fi-
nally, Priv(u;) = {unsat}, and@ = q. It is not hard to see thatis an answer ifip
is satisfiable: Ify is an answer, then a truth assignment can be obtained frosubiset
X € MKB in which exactly the:; in X are interpreted as true.

As X UBK(()ug) = unsat, no conjunct inp evaluates to false under this assign-
ment, which therefore satisfies Conversely, ifp is satisfiable, each cardinality maxi-
mal satisfying truth assignment inducesdnC MKB, such thatX U BK(()u) [~
unsat. O



Corollary 3. First-order privacy preservation problems with em@®¥ and arbitrary
Priv are hard forXF.

Proof. We showX! -hardness by a reduction fromaB F5 5 to aP3 in whichBK is
empty andPriv contains arbitrary formulae. Consid¢ér= Jx; - - - 3z, Vy1 - - - Vym @,
where¢ is a propositional formula. We creatd8 with MKB = {z1,...,z,} U{q},
two usersug, u1, Priv(u;) = {—-¢}, and@ = ¢. An answerX induces a valuation
of the existentially quantified variables. Then, no extensi’ of v to the universally
quantified variables can exist such thais false, hence) is valid. Conversely, if) is
valid, each cardinality maximal satisfying truth assigmtrii®r x4, ..., z, induces an
answer. O

This proof can easily be adapted so tBK (u,) contains the arbitrary formula
(=¢) — unsat andPriv(u;) contains onlyunsat.

All complexity results above refer to propositional thesrior data complexity. In
our setting this means that oM KB is considered as input, while especidB¥ and
Priv are considered to be fixed. For considering program comple»@. the knowl-
edge baséM KB is fixed butBK andPriv are considered as inputs, we can adapt
the data complexity results by using techniques from [13]e Do space constraints,
we do not present proofs. It is obvious that allowing progggnot just facts) as input
increases the complexity problem. This is shown in Tablelwing function symbols
would make all problems undecidable.

Theorem 3. The program complexity for problems without function syisbader var-
ious syntactic restrictions are as reported in the Table 2.

[Priv/BK [[Facts [Non-disj. [Arbitrary |
Facts EXPTIME EXPTIME NEXPTIMENF
Non-disj{|NEXPTIME  [NEXPTIME |NEXPTIMENT
Arbitrary||INEXPTIMENT INEXPTIMENT |[NEXPTIMENT

Table 2. Program Complexity of Privacy Preservation Problems

4.3 Algorithm for First-Order Privacy Preservation Proble ms

We now describe an algorithm that leverages our translatiatefault logic. First and
foremost, we recall the important observation of [2] thait&& 1", operator is anti-
monotonic - hence, the operatbi that applies/, is monotonic. As a consequence,
I'% has both a least fixpoint and a greatest fixpoint, deniiggd’? ) andgfp(1'3) re-
spectively.

Theorem 4 ([2]). Recall the following properties:

1. IfY; C Yz thenla(Yz) C Ia(Y).



2. I'} has aleast and a greatest fixpoint, denoted respectivéfp@s3 ) andgfp(1'%).
3. I'a(Ifp(I'3)) = gfp(I'3).

An immediate consequence of the above theorem is that oneocapute extensions of
default theories by first computirifp(1'3) andgfp(7'%). Anything inlfp(1'3) is true in

all extensions, while anything not gfp(7'% ) is false in all extensions. We can therefore
start by computing bothp(7'3) andgfp(I'%). If Ifp(I'3) is not an extension, we non-
deterministically add things igfp(I'3) to the default theory and iteratively compute
the least fixpoint off 4 w.r.t. the modified theory. This algorithm for arbitrary deft
theories gives rise to the specialization for computinghams depicted in Figure 1.

P3AIg(MKB, U, BK, Priv, Q, uo)
A =trans(MKB, U, BK, Priv, Q,uo) = (D, W);
Todo = MKB N (gfp(I'2) \ fp(T'3));
if Ifp(I') = Fa(ifp(I'3)) then
done = true;
while Todo # @ A —done do

Nondeterministically select ane Todo;
LetA = (D,W U{a});
if Ifp(I') = Fa(ifp(I'3)) then
done = true;
else
Todo = Todo \ {a};
% end-while
return MKB N Ifp(I'3);

Fig. 1. Algorithm computing privacy preserving answers.

The algorithm proceeds as follows: First the problem isdiatied to a default theory
usingtrans. Subsequently, the least and greatest fixpoidtpare computed. Anything
which is in the greatest, but not in the least fixpoint can amca be true in some
extension, so we store it iflodo to nondeterministically assume its truth.

The crucial point here is that we restrict these nondetéstiirchoices taVIKB,
which can dramatically decrease the search space. Thentestlea nondeterministic
phase of the algorithm, in which a truth assignmentfffodo is generated until a fixpoint
(i.e., an extension) is reached, if at all. As a final step cgaotion of the extension onto
MKRB is generated. The following proposition states that thevaladgorithm is always
guaranteed to return the correct answer.

Proposition 2. Let (MKB, U, BK, Priv, Q,uo) be a first-order privacy preserva-
tion problem. Then the algorithiR3AIg(MKB, U, BK, Priv, Q, ug) returns X iff
X is a privacy preserving answer {MKB, U, BK, Priv, Q, u).



5 Conclusion and Future Work

We have presented a general definition of the privacy pratervproblem, which al-
lows for using knowledge bases of different kinds. Findingazy preserving answers
can then be accomplished by building an appropriate matitext system and com-
puting one of its belief states. Since systems for solvinffirsontext systems begin to
emerge, for example DMCS [1], this also implies that theseapy preserving answers
can be effectively computed.

However, usually one is interested in maximal privacy pnégag answers. It is un-
clear to us whether a similar construction to the one preskintthis paper can be used
for finding privacy preserving answers which are maximaljust creating appropri-
ate contexts and bridge rules and without modifying the lwea knowledge bases or
adding new knowledge bases of particular logics. One pleshite of investigation is
to examine work on diagnosing inconsistent multi-contgstams [11, 4], since in di-
agnosis tasks there is an implicit minimization criteriamich could be exploited for
encoding maximality.

Furthermore, we showed that the formalism subsumes areeddfinition of the
privacy preservation problem, for which it is possible tdedmine maximal privacy
preserving answers by a translation into default logic tRisrformalism, we conjecture
that a similar transformation to first-order theories ipteted using the stable model
semantics [13] exists. In future work, we intend to investiigsuch a transformation in
detail.

References

1. Bairakdar, S.E., Dao-Tran, M., Eiter, T., Fink, M., Krennwatjn&: The DMCS Solver
for Distributed Nonmonotonic Multi-Context Systems. In: JanhunenNiEmeh, I. (eds.)
Proceedings of the 12th European Conference on Logics in Artificiellimence (JELIA
2010). Lecture Notes in Computer Science, vol. 6341, pp. 352-38Hhder Verlag (2010)

2. Baral, C., Subrahmanian, V.: Dualities Between Alternative Semdiotidsogic Program-
ming and Non-Monotonic Reasoning. Journal of Automated Reasor0(g),1399-420
(1993)

3. Benton, J., Subrahmanian, V.: Hybrid Knowledge Bases for MiSsflag Applications. In:
IEEE Conference on Al Applications. pp. 141-148 (1993)

4. Bogl, M., Eiter, T., Fink, M., Schller, P.: The mcs-ie System for Explaining Inconsistency
in Multi-Context Systems. In: Janhunen, T., Nieénél (eds.) Proceedings of the 12th Euro-
pean Conference on Logics in Artificial Intelligence (JELIA 2010). tuee Notes in Com-
puter Science, vol. 6341, pp. 356—359. Springer Verlag (2010)

5. Bonatti, P.A., Kraus, S., Subrahmanian, V.: Foundations ofreeteductive databases. IEEE
Transactions on Knowledge and Data Engineering 7(3), 406—-425)199

6. Brewka, G., Dix, J., Konolige, K.: Nonmonotonic Reasoning: Arefiew, CSLI Lecture
Notes, vol. 73. CSLI Publications, Stanford, CA (1997)

7. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Mbdtittext Systems.
In: Proceedings of the Twenty-Second National Conference on Aatifitelligence (AAAI-
2007). pp. 385—-390. AAAI Press (2007)

8. Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query Langu#i§EE Transactions on
Knowledge and Data Engineering 9(3), 448—-463 (May/June 1997)



9. Dix, J.: Default Theories of Poole-Type and a Method for ConsitrgcCumulative Ver-
sions of Default Logic. In: Neumann, B. (ed.) Proc. of 10th Eussp€onf. on Atrtificial
Intelligence ECAI 92. pp. 289-293. John Wiley & Sons (1992)

10. Dix, J., Faber, W., Subrahmanian, V.: The Relationship betweasdhing about Privacy
and Default Logics. In: Sutcliffe, G., Voronkov, A. (eds.) Logie ferogramming, Avrtificial
Intelligence, and Reasoning, 12th International Conference, LPAR.A0ecture Notes in
Computer Science, vol. 3835, pp. 637-650. Springer Verlag (D@6)20

11. Eiter, T., Fink, M., Schller, P., Weinzierl, A.: Finding Explanations of Inconsistency in
Multi-Context Systems. In: Lin, F., Sattler, U., Truszézki, M. (eds.) Proceedings of the
Twelfth International Conference on Knowledge Representation anddRéng (KR 2010).
AAAI Press (2010)

12. Faber, W.: Privacy Preservation Using Multi-Context System#ileo, A., Fink, M. (eds.)
Proceedings of the 2nd International Workshop on Logic-basedphetation of Context:
Modeling and Applications. pp. 45-51 (May 2011)

13. Ferraris, P, Lee, J., Lifschitz, V.: A New Perspective on Stifadels. In: Twentieth Inter-
national Joint Conference on Atrtificial Intelligence (IJCAI-07). pp23379 (Jan 2007)

14. Gottlob, G.: Complexity Results for Nonmonotonic Logics. Journdlagfic and Computa-
tion 2(3), 397-425 (1992)

15. Gottlob, G., Leone, N., Veith, H.: Succinctness as a Source aeEgjpn Complexity. An-
nals of Pure and Applied Logic 97(1-3), 231-260 (1999)

16. Kautz, H., Selman, B.: Hard Problems for Simple Default Logiasfigial Intelligence 49,
243-279 (1991)

17. Lu, J., Nerode, A., Subrahmanian, V.: Hybrid Knowedge Ba$EE Transactions on
Knowledge and Data Engineering 8(3), 773—785 (1996)

18. Marek, W., Truszczyski, M.: Nonmonotonic Logics; Context-Dependent Reasoning.
Springer, Berlin, 1st edn. (1993)

19. Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 1-32), 81-132 (1980)

20. Stillman, J.: It's Not My Default: The Complexity of Membership Prabtein Restricted
Propositional Default Logic. In: Proceedings AAAI-90. pp. 5719-%7990)

21. Stillman, J.: The Complexity of Propositional Default Logic. In: Redings AAAI-92. pp.
794-799 (1992)

22. Subrahmanian, V.: Amalgamating Knowedge Bases. ACM Tréinsaoon Database Sys-
tems 19(2), 291-331 (1994)

23. Winslett, M., Smith, K., Qian, X.: Formal query languages for secalational databases.
ACM Transactions on Database Systems 19(4), 626—662 (1994)

24. Zhao, L., Qian, J., Chang, L., Cai, G.: Using ASP for knowledgmagement with user
authorization. Data & Knowledge Engineering 69(8), 737—762 (2010)



