
Privacy Preservation Using Multi-Context Systems and
Default Logic

Jürgen Dix1⋆, Wolfgang Faber2⋆⋆, and V.S. Subrahmanian3

1 Department of Informatics
Clausthal University of Technology

38678 Clausthal, Germany
dix@tu-clausthal.de

2 Department of Mathematics
University of Calabria

87030 Rende (CS), Italy
wf@wfaber.com

3 Department of Computer Science
University of Maryland

College Park, MD 20742
vs@cs.umd.edu

Abstract. Preserving the privacy of sensitive data is one of the major challenges
the information society has to face. Traditional approaches focused oninfrastruc-
tures for identifying data which is to be kept private and for managing access
rights to these data. However, although these efforts are useful, they donot ad-
dress an important aspect: While the sensitive data itself can be protected nicely
using these mechanisms, related data, which is deemed insensitive per se, may
be used toinfer sensitive data. This inference can be achieved by combining in-
sensitive data or by exploiting specific background knowledge of the domain of
discourse. In this paper, we present a general formalization of this problem and
two particular instantiations of it. The first supports query answering by means of
multi-context systems and hybrid knowledge bases, while the second allows for
query answering by using default logic.

1 Introduction

With the advent of the Internet and easy access to huge amounts of data, keeping sensi-
tive data private has become a priority for distributed information systems. An example
area in which privacy is at stake are medical information systems.

Most databases have privacy mechanisms which are comparatively simple. Often,
this boils down to keeping certain columns of the database hidden from certain types
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of users. There are many approaches dealing with formalismsfor this kind of autho-
rization problem, and we refer to [24] and references in thatwork, in which aspects of
the authorization problem in non-monotonic knowledge bases are discussed. What we
are interested in, however, is a somewhat different issue:Can users infer private infor-
mation by only asking queries that do not involve such information and then making
“common sense” inferences from the answers?

In this paper, we generalize an earlier definition of thePrivacy Preservation Prob-
lem [10]. This definition imposed several restrictions on the underlying knowledge
bases. Most importantly, they had to be first-order theories, because in this way it is
easily possible to build a default theory around them. In ournew definition, we aim
at making as few assumptions about the involved knowledge bases as possible. Essen-
tially we will use the terminology that has been introduced for multi-context systems
by Brewka and Eiter in [7]: It only assumes the knowledge bases to have an underlying
logic of some sort.

We will show that multi-context systems can be used for implementing a system
that computes privacy preserving answers. Essentially, weuse contexts and bridge rules
that link contexts in order to determine whether an answer violates the privacy require-
ments of some user. An appealing aspect of this instantiation of the general privacy
preservation framework is that efficient systems for reasoning with multi-context sys-
tems are beginning to emerge [1], making privacy preservingquery answering systems
feasible in practice. We will then consider a restriction ofthe framework, which essen-
tially matches the definitions of [10], and review how default logic can be used in order
to obtain a privacy preserving query answering system.

In the following, we first provide a general definition of the privacy preservation
problem in Section 2, which allows for heterogeneous knowledge bases. In Section 3
we show how to construct a multi-context system for computing answers for the general
privacy preservation problem. In Section 4 we show that the setting of [10] is a special
case of the general framework and review how to solve these problems by means of
default logic. We conclude with Section 5 and outline futurework. This work elaborates
on earlier results presented in [10] and [12].

2 Privacy Preservation Problem

In this section, we provide a general formalization of the privacy preservation problem,
P3 for short. This development is similar to the one in [5] and some earlier work in
[23], with slightly modified terminology. We start with basic concepts for describing
knowledge bases, using terminology of [7].

We consider alogic L as in [7] to be a triple(KBL,BSL,ACCL) whereKBL

is the set of well-formed knowledge bases ofL (each of which is a set as well),BSL

is the set of possible belief sets, andACCL is a functionKBL → 2BSL describing
the semantics of each knowledge base. In the following, whenmentioning knowledge
bases, we do not specify the underlying logic (and drop the subscripts fromKB, BS,
andACC): It can just be any logic in the sense just described. Moreover, let the finite
setU contain one user ID for each user in the system under consideration. By abuse of
language we use the notationU = {u1, . . . , u|U|}.



Definition 1 (main knowledge baseMKB). Themain knowledge baseMKB is a
knowledge base of some logicL.

The main knowledge base is the one that the users will be querying, and around
which the privacy preservation mechanism must be implemented. So the users will
query the main knowledge base, and the privacy preservationmechanism might prevent
certain answers to be disclosed. This mechanism foresees the availability of a model of
each user’s knowledge. Thus, at any given instancet in time, each useru has some set
of background knowledge. This background knowledge may be elicited in many ways:
One such source is the set of all information disclosed to theuser by the system. For
example, a hospital accountant may not be allowed to see patient diagnoses, though she
may see billing information about them.

Definition 2 (user model).The functionBK assigns to each useru ∈ U a background
knowledge baseBKt(u) for each timepointt. The functionPriv assigns to each user
u ∈ U a belief setPriv(u) that should be kept private.

Note that the various knowledge bases need not be of the same logic, but for practical
reasons one would assume the belief sets to be homogeneous. It should be pointed out
thatBKt(u) will usually not be the user’s own knowledge base, but rathera model of
the user’s knowledge, maintained by the information system. Note thatBKt(u) varies
ast varies. For example, as the database discloses answers to the useru, the background
knowledge associated toumay increase.Throughout most of this paper, we assume that
t is fixed and we address the problem of preserving privacy at a given timepoint.As a
consequence, we usually writeBK(u) and drop the superscriptt.

Example 1.Consider a small medical knowledge baseMedKB containing information
about the symptoms and diseases of some patients. Let this knowledge base describe
two predicatessymptom anddisease and let the following be its only belief setSMedKB:

symptom(john, s1) symptom(jane, s1) disease(jane, aids)
symptom(john, s2) symptom(jane, s4) disease(john, cancer)
symptom(john, s3) disease(ed, polio)

Note thatMedKB could very well be just a database. Assume thatjohn andjane are
also users of the system and want to keep their diseases private, soPriv(john) =
{disease(john, cancer)}, while Priv(jane) = {disease(jane, aids)}. Consider an-
other useracct (an accountant). This person may have the following background knowl-
edge baseBK(acct) in the form of rules (so the underlying logic might be answer set
programming).

disease(X, aids)← symptom(X, s1), symptom(X, s4)
disease(X, cancer)← symptom(X, s2), symptom(X, s3)

We now define the concepts of query and answer to a knowledge base. The precise
notation of a query is not so important, only the definition ofits answer is. So given a
main knowledge baseMKB wrt. a logic L, we assume there is a setQ consisting of
all queries overMKB.



Definition 3 (query and answer).We assume that there is a mapping which associates
to eachqueryQ ∈ Q, each knowledge base and each semantics inlogicL, a belief set
ofL. This belief set is referred to as theanswertoQ and is denoted byAns(Q).

Users pose a query to the main knowledge base, but the privacypreservation mecha-
nism should allow only answers which do not violate the privacy specifications of users
after taking into account, the (presumed) knowledge of the user asking the query.

Definition 4 ((maximal) privacy preserving answer).A privacy preserving answerto
a queryQ overMKB posed byuo ∈ U with respect toBK andPriv isX ⊆ Ans(Q)
such that for allu ∈ U \ {u0} and for all p ∈ Priv(u), if p 6∈ ACC(BK(u0)) then
p 6∈ ACC(X ∪ BK(u0)). A maximal privacy preserving answeris a subset maximal
privacy preserving answer.

Note that here we assume that elements of belief sets can be added to knowledge
bases, yielding again a knowledge base of the respective logic. We are now ready to
formally define the central problem studied in this paper.

Definition 5 (privacy preservation problem). A privacy preservation problemP3 is
a tuple(MKB,U,BK,Priv, Q, u0). Solutions of this problem are all the (maximal)
privacy preserving answers toQ posed byu0 over MKB with respect toBK and
Priv.

Example 2.Returning to ourMedKB example, posing the querydisease(john,X),
we would get as an answer the set{disease(john, cancer)}. Likewise, the answer
to the querysymptom(john,X) is the set{symptom(john, s1), symptom(john, s2),
symptom(john, s3)}.

We assumed that John and Jane want their diseases kept privately. However, the
accountant can violate John’s privacy by asking the querysymptom(john,X). The an-
swer thatacctwould get from the system is{symptom(john, s1), symptom(john, s2),
symptom(john, s3)}. However, recall that the accountant has some background knowl-
edge including the rule

disease(X, cancer)← symptom(X, s2), symptom(X, s3)

which, with the answer of the query, would allowacct to inferdisease(john, cancer).
Thus the privacy preserving answers tosymptom(john,X) are

Ans1 = {symptom(john, s1), symptom(john, s2)}

Ans2 = {symptom(john, s1), symptom(john, s3)}

Ans3 = {symptom(john, s1)}

Ans4 = {symptom(john, s2)}

Ans5 = {symptom(john, s3)}

Ans6 = ∅

None of these answers allowsacct to infer the private knowledgedisease(john, cancer).
However, except for the answersAns1 andAns2, which are maximal, all answers yield



less information than could be disclosed without infringing privacy requirements. Any
system should also provide only one of these answers to the user, because getting for
instance bothAns1 andAns2 would again violate John’s privacy requirements.

In a practical system, upon disclosing an answer the system should update the re-
spective user’s knowledge model in order to avoid privacy infringements by repeated
querying. For example, when the system returnsAns1 to useracct, it should mod-
ify BK(acct) in order to reflect the fact thatacct now knowssymptom(john, s1)
and symptom(john, s2), such that asking the same query again it is made sure that
symptom(john, s3) will not be disclosed toacct.

A related aspect is how the background knowledge base is determined precisely.
We do not want to restrict the formalism by making any assumption on this issue, but
in practice this will be a system that is maintained dynamically and will derive from
both exogenous knowledge (for instance, information provided by an administrator,
which may also be information on what knowledge bases a user is actively using) and
endogenous knowledge (as in the example above, answers disclosed by the system to a
user in the past).

3 Solving Privacy Preservation Problems Using Multi-Context
Systems and Hybrid Knowledge Bases

The definitions in Section 2 were already slightly geared towards multi-context systems.
We recall that a multi-context system in the sense of [7] is a tuple(C1, . . . , Cn) where
for eachi (1 ≤ i ≤ n),Ci = (Li, kbi, bri) whereLi is a logic,kbi is a knowledge base
of Li andbri is a set ofLi bridge rules over{L1, . . . , Ln}, where anLi bridge rule
over{L1, . . . , Ln} is a construct

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . , not (rm : pm)

where1 ≤ rk ≤ n, pk is an element of a belief set forLrk and, for eachkb ∈ KBi,
kb ∪ {s} ∈ KBi. Such rules (without negation) were first introduced in [22]and later
generalized to include negation (and much more) in [17] and are called “hybrid knowl-
edge bases” based on annotated logic.4 In the rest of this section, we use multi-construct
systems in our syntax simply because a choice has to be made for syntax.

The semantics of a multi-context system is defined by means ofequilibria. A belief
statefor a multi-context system(C1, . . . , Cn) isS = (S1, . . . , Sn), whereSi ∈ BSi for
1 ≤ i ≤ n. An Li bridge rule of the form above is applicable inS iff, for 1 ≤ k ≤ j,
pk ∈ Srk holds and, forj < k ≤ m, pk 6∈ Srk holds. Letapp(br, S) denote the
set of all bridge rules inbr which are applicable in a belief stateS. A belief state
S = (S1, . . . , Sn) is an equilibrium of a multi-context system(C1, . . . , Cn) iff for all
1 ≤ i ≤ n, Si ∈ ACCi(kbi ∪ {hd(r) | r ∈ app(bri, S)}), wherehd(r) is the head of
a bridge ruler, viz. s in the bridge rule schema given above.

4 In [22], the main difference in this syntax was that theri : pi’s were instead writtenpi : ri.
[17] extended this to include not just “annotated” rules in the body, but also many other con-
structs including references to non-logical data structures and software instead of just logics
Li. However, [7] allows non-atomic constructs in rule bodies. Thus, [7] may be viewed as a
generalization of [22] but not of [17].



Given aP3 (MKB,U,BK,Priv, Q, u), with U = {u1, . . . , u|U|}, in order to
identify privacy preserving answers, we build a multi-context systemMP3 = (C1,

C2, C3, C4, . . . , C|U|+3), whereC1 = (LMKB,MKB, ∅), C2 = (LMKB, ∅, br2),
C3 = (LMKB, ∅, br3), C4 = (LBK(u1),BK(u1), br4) . . . , C|U|+3 = (LBK(u|U|),

BK(u|U|), br|U|+3). HereLkb is the logic of the knowledge basekb. The meaning
is thatC1 provides just the belief sets forMKB (no bridge rules),C2 andC3 are
used to identify those belief sets which constitute privacypreserving answers, while
C4, . . . , C|U|+3 represent the user information, that is, the background knowledge base
of the querying user and the privacy requirements of the other users. The important part
are the bridge rules, which we will describe next. In many cases, we will create one rule
for each symbol that can occur in some belief set ofAns(Q), so for convenience let
D = {p | p ∈ B,B ∈ Ans(Q)}.

The setbr2 contains one bridge rulep ← (1 : p), not (3 : p) for eachp ∈ D.
Symmetrically,br3 contains one bridge rulep ← (1 : p), not (2 : p) for eachp ∈ D.
The intuition is that the belief sets ofC2 will be subsets of the belief set ofC1 in
any equilibrium, and hence potential privacy preserving answers.C3 exists only for
technical reasons.

For i such thatui−2 = u, thus for the contextCi of the querying user, we add one
bridge rulep ← (2 : p) for eachp ∈ D. This means that in any equilibrium, the belief
set fori will contain all consequences of the privacy preserving answer with respect to
u’s knowledge base.

For eachiwhere3 < i ≤ |U|+3 such thatui−2 6= u, thus for contexts representing
non-querying users,bri contains one bridge rulep1 ← (j : p1), . . . , (j : pl), not (i :
p1) for uj = u and{p1, . . . , pl} ∈ Priv(ui−2). The idea is that no belief state can
be an equilibrium, in which the querying user derives information whichui−2 wants to
keep private.

Note that the tuple(S1, S2, S3, S4, . . . , S|U|+3) was constructed in such a way,
thatS2 represents the potential privacy preserving answers. The following proposition
shows that our construction does indeed reflect this.

Proposition 1. Given aP3 (MKB,U,BK,Priv, Q, u), each equilibrium belief state
(S1, S2, S3, S4, . . . , S|U|+3) for MP3 is such thatS2 is a privacy preserving answer
to P3. Also, each privacy preserving answerS to P3 is the second component of an
equilibrium forMP3.

Example 3.In the example examined above, consider theP3 (MedKB, {john, jane,
acct},BK, Priv, symptom(john,X), acct). Note that we did not define background
knowledge bases for usersjohn and jane, but their nature is not important for the
example, just assume that they exist. We also have not definedany privacy statement
for acct, but also this is not important for our example and we will assume that it
is empty, that is,acct does not require anything to be kept private. We construct a
multi-context system(C1, C2, C3, C4, C5, C6) whereC1 = (LMedKB,MedKB, ∅),
C2 = (LMedKB, ∅, br2) with bridge rulesbr2 being

symptom(john, s1)← (1 : symptom(john, s1)), not (3 : symptom(john, s1))
symptom(john, s2)← (1 : symptom(john, s2)), not (3 : symptom(john, s2))
symptom(john, s3)← (1 : symptom(john, s3)), not (3 : symptom(john, s3))



thenC3 = (LMedKB, ∅, br3) with bridge rulesbr3 being

symptom(john, s1)← (1 : symptom(john, s1)), not (2 : symptom(john, s1))
symptom(john, s2)← (1 : symptom(john, s2)), not (2 : symptom(john, s2))
symptom(john, s3)← (1 : symptom(john, s3)), not (2 : symptom(john, s3))

thenC4 = (LBK(john),BK(john), br4) with bridge rulesbr4 being

disease(john, cancer)← (6 : disease(john, cancer)), not (4 : disease(john, cancer))

thenC5 = (LBK(jane),BK(jane), br5) with bridge rulesbr5 being

disease(jane, aids)← (6 : disease(jane, aids)), not (5 : disease(jane, aids)

and finallyC6 = (LBK(acct),BK(acct), br6) with bridge rulesbr6 being

symptom(john, s1)← (2 : symptom(john, s1))
symptom(john, s2)← (2 : symptom(john, s2))
symptom(john, s3)← (2 : symptom(john, s3))

MP3 has six equilibria

E1 = (SMedKB, Ans1,Ans(symptom(john,X)) \Ans1, Ans1, ∅, ∅)

E2 = (SMedKB, Ans2,Ans(symptom(john,X)) \Ans2, Ans2, ∅, ∅)

E3 = (SMedKB, Ans3,Ans(symptom(john,X)) \Ans3, Ans3, ∅, ∅)

E4 = (SMedKB, Ans4,Ans(symptom(john,X)) \Ans4, Ans4, ∅, ∅)

E5 = (SMedKB, Ans5,Ans(symptom(john,X)) \Ans5, Ans5, ∅, ∅)

E6 = (SMedKB, Ans6,Ans(symptom(john,X)) \Ans6, Ans6, ∅, ∅)

whereSMedKB is as in Example 1 and the second belief set of eachEi is exactly the re-
spectiveAnsi of Example 2 and the third belief set is the complement ofAnsi with
respect toAns(symptom(john,X)) = {symptom(john, s1), symptom(john, s2),
symptom(john, s3)}.

We would like to point out that in this construction the original knowledge bases are
not changed, we only create contexts and bridge rules. All ofthe background knowledge
bases could be multi-context systems themselves; for instance, if the user model foracct
foresees thatacct is aware of SNOMED and PEPID, thenacct’s background knowledge
base could be a multi-context system comprising these two medical knowledge bases.

In order to obtain maximal privacy preserving answers usingthe described construc-
tion, the simplest way is to postprocess all privacy preserving answers. More involved
solutions would have to interfere with the underlying multi-context system reasoner, for
instance by dynamically changing the multi-context system. It is not clear to us at the
moment whether it is possible to modify the construction such that the equilibria of the
obtained multi-context system correspond directly to the maximal privacy preserving
answers.

We note that the “equilibria” in multi-context systems are similar to the non-monotonic
constructs in the prior “hybrid knowledge bases” work of [17] based on annotated logic
and so the results of this section also show that hybrid knowledge bases can be used to
encode privacy constructs. Hybrid knowledge bases were extensively implemented and
used to build a very large number of applications on top of real databases [3].



4 Solving First-Order Privacy Preservation Problems Using
Default Logic

In this section, we show that the formalism in [10], calledfirst-order privacy preserva-
tion problem, is an instance of the formalism defined in Section 2.

4.1 First-Order Privacy Preservation Problems

For defining a first-order language (without equality), we assume the existence of some
finite set of constant symbols, function symbols and predicate symbols. As usual, a term
is inductively defined as follows: (i) Each constant is a term, (ii) Each variable is a term,
and (iii) if f is ann-ary predicate symbol andt1, . . . , tn are terms, thenf(t1, . . . , tn)
is a term. Aground termis any term that contains no variable symbols. Similarly, if
p is ann-ary predicate symbol andt1, . . . , tn are terms, thenp(t1, . . . , tn) is an atom.
A ground atomis any atom that contains no variable symbols. A well formed formula
(wff) is inductively defined as follows. (i) Every atom is a wff, (ii) If F,G are wffs then
so are(F ∧ G), (F ∨ G) and¬F . The semantics is given as usual (all formulae are
considered to be universally quantified, so we do not need to introduce quantifiers).

Definition 6 (first-order privacy preservation problem). A first-order privacy preser-
vation problem(MKB,U,BK,Priv, Q, u0) is a P3 in which MKB is a set of
ground atoms (also called logic database), eachBKt(u) is a set of wffs, andPriv(u)
is also a set of wffs, represented by its set of models.

Now, given a first-order privacy preservation problem(MKB,U,BK,Priv, Q, u0),
we define a translationtrans, which produces a default logic theory∆ = (D,W ) such
that there is a bijective correspondence between the solutions to the privacy preservation
problem and the extensions of the default theory (restricted to the query) returned by the
translation [8]. The consequence of this translation is that standard (and well studied)
methods to evaluate default logic theories may be used to preserve privacy effectively,
efficiently, and elegantly.

We refer to standard textbooks (e.g. [18, 6]) for an introduction to default theories.
We denote defaults as usual bya : b

c
if a holds and it is consistent to assumeb then

concludec. Most of our defaults are supernormal, i.e. of the form: f
f

. A default theory
is a pair∆ = (D,W ) where the first component consists of the whole set of defaults
and the second is a set of formulae (the classical theory).

Definition 7 (trans). Let(MKB,U,BK,Priv, Q, u0) be a first-order privacy preser-
vation problem. Thetranslation, trans(MKB,U,BK,Priv, Q, u0) of a privacy preser-
vation problem into default logic is the default logic theory∆ = (D,W ) where:

W = BK(u0).

D = {
: f

f
| f ∈MKB}

⋃

{
p :

¬p
| (∃u ∈ U− {u0}) p ∈ Priv(u) and BK(u0) 6|= p}.



We now present an example to show how the result of transforming the privacy preser-
vation problem into default logic looks like.

Example 4.Let us return to the case of the accountant. Assume thatMedKB of Ex-
ample 1 is a logic database, that the “rules” ofBK andPriv in Example 1 are wffs,
making the problem in the example a first-order privacy preservation problem. In this
case,W consists of the following two rules (which need to be writtenslightly differ-
ently so as to comply with the wff’s as defined in the beginningof this section):

symptom(X, s1)& symptom(X, s4)→ disease(X, aids)
symptom(X, s2)& symptom(X, s3)→ disease(X, cancer).

In addition,D consists of the following defaults:

: symptom(john,s1)
symptom(john,s1)

: symptom(john,s2)
symptom(john,s2)

: symptom(john,s3)
symptom(john,s3)

: symptom(jane,s1)
symptom(jane,s1)

: symptom(jane,s4)
symptom(jane,s4)

: disease(ed,polio)
disease(ed,polio)

: disease(jane,aids)
disease(jane,aids)

: disease(john,cancer)
disease(john,cancer)

disease(jane,aids) :
¬disease(jane,aids)

disease(john,cancer) :
¬disease(john,cancer)

Note that we are assuming here that Ed has not marked his disease as being a private
fact.

Our translation uses linear space. The time complexity of the translation depends on the
complexity of checking entailment. For example, assuming afinite number of constants
in our language (reasonable) and assuming that all rules inBK are definite clauses (i.e.
clauses with exactly one atom), then the translation is implementable in polynomial
time. But ifBK consists of arbitrary first order formulas, then the translation can take
exponential time.

We remind the reader of some basic terminology associated with default theories.
Given a defaultd = α:β

γ
, we use the notationpre(d) to denoteα, j(d) to denoteβ

and c(d) to denoteγ. In addition, given any default theory∆ = (D,W ), we may
associate with∆, a mappingΓ∆ which maps sets of wffs to sets of wffs.Γ∆(Y ) =
CN(W ∪ {pre(d)→ c(d) | j(d) is consistent withY }). As usual, the functionCN(X)
denotes the set of all first order logical consequences ofX. A set Y of wffs is an
extensionof ∆ iff Y = Γ∆(Y ).

We are now ready to present a key result linking the privacy preservation problem
to default logic extensions. Suppose we consider any privacy preservation problem.
The privacy preserving answers to that privacy preservation problem are in a one-one
correspondence with the consistent extensions of the translation (restricted to the query)
of the privacy preservation problem into default logic (using the translationtrans shown
in Definition 7).



Theorem 1. Suppose thatQ is an atom and that(MKB,U,BK,Priv, Q, u0) is a
first-order privacy preservation problem andtrans(MKB,U,BK,Priv, Q, u0) =
∆ = (D,W ). Then:X is a solution to the above privacy preservation problem iff there
is a consistent extensionE of∆ = (D,W ) such thatX = {Aθ |Aθ ∈ E ∩MKB}.

In order to prove Theorem 1, we first formulate a useful abstract lemma.

Lemma 1. Let W , MKB and P be consistent sets of formulae s.t.W ∪ MKB is
consistent as well. LetDP = {p :

¬p
: p ∈ P} andDMKB = { : f

f
: f ∈MKB}.

Then the consistent extensions of the theory(DP∪DMKB ,W ) are the setsCn(W∪
{f : f ∈ F}) whereF is a subset ofMKB that is maximal wrt. set inclusion (i.e. there
is no larger setF ′ such thatW ∪ {f : f ∈ F ′} 6|= p for all p ∈ P ).

Proof. Clearly the setsCn(W ∪{f : f ∈ F}) whereF is a maximal subset ofMKB

are extensions of the default theory: The defaults inDP do not apply and we are left
with a supernormal default theory (the result follows from well-known characterizations
in default logic, see eg. [9, 18]).

Conversely, letE be a consistent extension. Then no default inDP applies. Because
extensions are grounded and we are dealing with a supernormal theory,E must have
the formCn(W ∪ {f : f ∈ F}) for a subsetF of MKB. BecauseE is maximal (no
other extension can containE), the setCn(W ∪ {f : f ∈ F}) is maximal in the sense
defined in the lemma. ⊓⊔

Now we are able to prove Theorem 1:

Proof. The proof of Theorem 1 is an application of Lemma 1. SupposeX is a solution
to (MKB,U,BK,Priv, Q, u0) and lettrans(MKB,U,BK,Priv, Q, u0) = ∆ =
(D,W ). Then we letF := X, W := BK(u0) andP := {p : (∃u ∈ U − {u0})
p ∈ Priv(u) andBK(u0) 6|= p} and apply our lemma. The setCn(W ∪ {f : f ∈
F}) is an extension (it is maximal because of (3) and (2) in the definition of a privacy
preserving answer).

Conversely let a consistent extensionE of trans(MKB,U,BK,Priv, Q, u0) be
given and considerX := {Qθ | Qθ ∈ E ∩MKB}. Our lemma implies thatX is a
subset of MKB that is maximal. ThereforeX is also a privacy preserving answer (if
there were a largerX ′ satisfying (2) in the definition of pp answer, thenE would not
be maximal and thus not be an extension). ⊓⊔

The preceding theorem applies toatomicqueries. A straightforward extension of
the above proof gives us the following corollary, which applies to arbitrary queries.

Corollary 1. Suppose that(MKB,U,BK,Priv, Q, u0) is a privacy preservation
problem and thattrans(MKB,U,BK,Priv, Q, u0) = (D,W ). Then:X is a so-
lution to the above privacy preservation problem iff there is a consistent extensionE of
(D,W ) such thatX = {Qθ |Qθ ∈ E ∩MKB}.

In order to illustrate this theorem, we revisit the example privacy preservation prob-
lem and its default logic translation that we presented earlier.



Example 5.Let us return to theMedKB example. Consider the privacy preservation
problem of Example 1 and the default logic translation shownin Example 4. As seen in
Example 1, there are two privacy preserving answers to this problem. They are:

Ans1 = {symptom(john, s1), symptom(john, s2)}

Ans2 = {symptom(john, s1), symptom(john, s3)}

The default logic translation of this privacy preservationproblem shown in Example 4
has exactly four consistent extensionsE1, . . . , E4.

E1 = CN(W ∪ {symptom(john, s1), symptom(john, s2),

symptom(jane, s1), disease(ed, polio)})

E2 = CN(W ∪ {symptom(john, s1), symptom(john, s3),

symptom(jane, s1), disease(ed, polio)})

E3 = CN(W ∪ {symptom(john, s1), symptom(john, s2),

symptom(jane, s4), disease(ed, polio)})

E4 = CN(W ∪ {symptom(john, s1), symptom(john, s3),

symptom(jane, s4), disease(ed, polio)})

However, if we are only interested in answers to the querysymptom(john,X) in
the above extensions, then the extensionsE1, E4 only contain{symptom(john, s1),
symptom(john, s2)}whileE2, E3 only contain{symptom(john, s1), symptom(john, s3)}.
These restrictions of the extensions are in a one-one correspondence with the privacy
preserving answers to the query posed by the accountant.

4.2 Complexity of First-Order Privacy Preservation Problems

Computing a privacy-preserving answer typically involvesguessinga subset of an-
swers, and subsequently checking it with respect to privacypreservation and maximal-
ity. Intuitively, this computational task has a correspondence to common non-monotonic
reasoning tasks, because the maximality condition for privacy-preserving answers has
its counterpart the minimality conditions in non-monotonic semantics, while guessing
a model candidate and checking it on a set of formulae is even more closely related.

It therefore does not come as a surprise that a non-monotoniclogic neatly represents
the privacy preservation problem. Concerning the complexity analysis, we can indeed
leverage the translationtrans to use well-known results concerning the complexity of
default logic in order to prove membership of various subclasses of first-order privacy
preservation problems.

As already shown in [19], default reasoning involving function symbols is unde-
cidable. Note that computing maximal privacy preserving answers involves checking
BK(u0) 6|= p, which is clearly undecidable for arbitrary first-order formulae. We will
therefore focus on decidable fragments. In particular, we will assume in our analysis
below that problems are restricted to those for which deciding BK 6|= p, p ∈ Priv

is feasible in polynomial time. We will focus on theories in aDatalog setting, the data
complexity (we consider onlyMKB, i.e. the knowledge base, as input,BK andPriv

are fixed) of which corresponds to propositional default theories.



Then, membership can be seen by virtue oftrans and the form of formulae inBK

andPriv. In particular, brave reasoning for non-disjunctive default theories is NP-
complete (see e.g. [16, 20] for such classes), while brave reasoning for arbitrary default
theories isΣP

2 -complete, see [14] and [21].
We thus consider first-order privacy preservation problemswith the following re-

strictions:

1. We varyBK(u) to be an arbitrary theory (without syntactic retrictions),a non-
disjunctive theory (as in [16, 20]), and a set of facts (a theory containing only
ground atoms).

2. We varyPriv(u) to be a set of arbitrary formulas, a non-disjunctive theory,and a
set of facts.

Table 1 summarizes our results on the complexity of privacy preservation in the
Datalog case.

Priv/BK FactsNon-disjunctiveArbitrary

Facts P P ΣP

2

Non-disjunctive NP NP ΣP

2

Arbitrary ΣP

2 ΣP

2 ΣP

2

Table 1.Data Complexity of First-Order Privacy Preservation Problems

Theorem 2. The data complexity for first-order privacy preservation problems with-
out function symbols under various syntactic restrictionsare as reported in Table 1.
Completeness holds forNPandΣP

2 results.

Next, we will prove some of the hardness results.

Corollary 2. First-order privacy preservation problems withBK containing non-disjunctive
rules andPriv made of facts is hard forNP.

Proof. We show NP-hardness by a reduction from 3SAT to a first-order privacy preser-
vation problem in whichBK() contains only rules with negation onMKB predicates
and in whichPriv contains only one fact: Given a CNFφ =

∧n
i=1 Li,1 ∨ Li,2 ∨ Li,3,

we create aP3 with MKB = {ci | ci is an atom inφ} ∪ {q}, two usersu0, u1,
BK(u0) = {L′

i,1 ∧ L
′
i,2 ∧ L

′
i,3 → unsat}, where(¬x)′ = x andx′ = ¬x. Fi-

nally, Priv(u1) = {unsat}, andQ = q. It is not hard to see thatq is an answer iffφ
is satisfiable: Ifq is an answer, then a truth assignment can be obtained from thesubset
X ⊆MKB in which exactly theci in X are interpreted as true.

AsX ∪BK(()u0) 6|= unsat, no conjunct inφ evaluates to false under this assign-
ment, which therefore satisfiesφ. Conversely, ifφ is satisfiable, each cardinality maxi-
mal satisfying truth assignment induces anX ⊆ MKB, such thatX ∪ BK(()u0) 6|=
unsat. ⊓⊔



Corollary 3. First-order privacy preservation problems with emptyBK and arbitrary
Priv are hard forΣP

2 .

Proof. We showΣP
2 -hardness by a reduction from aQBF2,∃ to aP3 in whichBK is

empty andPriv contains arbitrary formulae. Considerψ = ∃x1 · · · ∃xn∀y1 · · · ∀ymφ,
whereφ is a propositional formula. We create aP3 with MKB = {x1, . . . , xn}∪{q},
two usersu0, u1, Priv(u1) = {¬φ}, andQ = q. An answerX induces a valuationν
of the existentially quantified variables. Then, no extension ν′ of ν to the universally
quantified variables can exist such thatφ is false, henceψ is valid. Conversely, ifψ is
valid, each cardinality maximal satisfying truth assignment for x1, . . . , xn induces an
answer. ⊓⊔

This proof can easily be adapted so thatBK(u0) contains the arbitrary formula
(¬φ)→ unsat andPriv(u1) contains onlyunsat.

All complexity results above refer to propositional theories or data complexity. In
our setting this means that onlyMKB is considered as input, while especiallyBK and
Priv are considered to be fixed. For considering program complexity, i.e. the knowl-
edge baseMKB is fixed butBK andPriv are considered as inputs, we can adapt
the data complexity results by using techniques from [15]. Due to space constraints,
we do not present proofs. It is obvious that allowing programs (not just facts) as input
increases the complexity problem. This is shown in Table 2. Allowing function symbols
would make all problems undecidable.

Theorem 3. The program complexity for problems without function symbols under var-
ious syntactic restrictions are as reported in the Table 2.

Priv/BK Facts Non-disj. Arbitrary

Facts EXPTIME EXPTIME NEXPTIMENP

Non-disj. NEXPTIME NEXPTIME NEXPTIMENP

Arbitrary NEXPTIMENP NEXPTIMENP NEXPTIMENP

Table 2.Program Complexity of Privacy Preservation Problems

4.3 Algorithm for First-Order Privacy Preservation Proble ms

We now describe an algorithm that leverages our translationto default logic. First and
foremost, we recall the important observation of [2] that Reiter’s Γ∆ operator is anti-
monotonic - hence, the operatorΓ 2

∆ that appliesΓ∆ is monotonic. As a consequence,
Γ 2
∆ has both a least fixpoint and a greatest fixpoint, denotedlfp(Γ 2

∆) andgfp(Γ 2
∆) re-

spectively.

Theorem 4 ([2]).Recall the following properties:

1. If Y1 ⊆ Y2 thenΓ∆(Y2) ⊆ Γ∆(Y1).



2. Γ 2
∆ has a least and a greatest fixpoint, denoted respectively aslfp(Γ 2

∆) andgfp(Γ 2
∆).

3. Γ∆(lfp(Γ 2
∆)) = gfp(Γ 2

∆).

An immediate consequence of the above theorem is that one cancompute extensions of
default theories by first computinglfp(Γ 2

∆) andgfp(Γ 2
∆). Anything in lfp(Γ 2

∆) is true in
all extensions, while anything not ingfp(Γ 2

∆) is false in all extensions. We can therefore
start by computing bothlfp(Γ 2

∆) andgfp(Γ 2
∆). If lfp(Γ 2

∆) is not an extension, we non-
deterministically add things ingfp(Γ 2

∆) to the default theory and iteratively compute
the least fixpoint ofΓ 2

∆ w.r.t. the modified theory. This algorithm for arbitrary default
theories gives rise to the specialization for computing answers depicted in Figure 1.

P3Alg(MKB,U,BK,Priv, Q, u0)

∆ = trans(MKB,U,BK,Priv, Q, u0) = (D,W );

Todo = MKB ∩ (gfp(Γ 2

∆) \ lfp(Γ 2

∆));

if lfp(Γ 2

∆) = Γ∆(lfp(Γ 2

∆)) then

done = true;

while Todo 6= ∅ ∧ ¬done do

Nondeterministically select ana ∈ Todo;

Let∆ = (D,W ∪ {a});

if lfp(Γ 2

∆) = Γ∆(lfp(Γ 2

∆)) then

done = true;
else

Todo = Todo \ {a};

% end-while

return MKB ∩ lfp(Γ 2

∆);

Fig. 1. Algorithm computing privacy preserving answers.

The algorithm proceeds as follows: First the problem is translated to a default theory
usingtrans. Subsequently, the least and greatest fixpoint ofΓ 2

∆ are computed. Anything
which is in the greatest, but not in the least fixpoint can or cannot be true in some
extension, so we store it inTodo to nondeterministically assume its truth.

The crucial point here is that we restrict these nondeterministic choices toMKB,
which can dramatically decrease the search space. Then we enter the nondeterministic
phase of the algorithm, in which a truth assignment forTodo is generated until a fixpoint
(i.e., an extension) is reached, if at all. As a final step, a projection of the extension onto
MKB is generated. The following proposition states that the above algorithm is always
guaranteed to return the correct answer.

Proposition 2. Let (MKB,U,BK,Priv, Q, u0) be a first-order privacy preserva-
tion problem. Then the algorithmP3Alg(MKB,U,BK,Priv, Q, u0) returnsX iff
X is a privacy preserving answer to(MKB,U,BK,Priv, Q, u0).



5 Conclusion and Future Work

We have presented a general definition of the privacy preservation problem, which al-
lows for using knowledge bases of different kinds. Finding privacy preserving answers
can then be accomplished by building an appropriate multi-context system and com-
puting one of its belief states. Since systems for solving multi-context systems begin to
emerge, for example DMCS [1], this also implies that these privacy preserving answers
can be effectively computed.

However, usually one is interested in maximal privacy preserving answers. It is un-
clear to us whether a similar construction to the one presented in this paper can be used
for finding privacy preserving answers which are maximal, byjust creating appropri-
ate contexts and bridge rules and without modifying the involved knowledge bases or
adding new knowledge bases of particular logics. One possible line of investigation is
to examine work on diagnosing inconsistent multi-context systems [11, 4], since in di-
agnosis tasks there is an implicit minimization criterion,which could be exploited for
encoding maximality.

Furthermore, we showed that the formalism subsumes an earlier definition of the
privacy preservation problem, for which it is possible to determine maximal privacy
preserving answers by a translation into default logic. Forthis formalism, we conjecture
that a similar transformation to first-order theories interpreted using the stable model
semantics [13] exists. In future work, we intend to investigate such a transformation in
detail.
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18. Marek, W., Truszczýnski, M.: Nonmonotonic Logics; Context-Dependent Reasoning.
Springer, Berlin, 1st edn. (1993)

19. Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13(1–2), 81–132 (1980)
20. Stillman, J.: It’s Not My Default: The Complexity of Membership Problems in Restricted

Propositional Default Logic. In: Proceedings AAAI-90. pp. 571–579 (1990)
21. Stillman, J.: The Complexity of Propositional Default Logic. In: Proceedings AAAI-92. pp.

794–799 (1992)
22. Subrahmanian, V.: Amalgamating Knowedge Bases. ACM Transactions on Database Sys-

tems 19(2), 291–331 (1994)
23. Winslett, M., Smith, K., Qian, X.: Formal query languages for secure relational databases.

ACM Transactions on Database Systems 19(4), 626–662 (1994)
24. Zhao, L., Qian, J., Chang, L., Cai, G.: Using ASP for knowledgemanagement with user

authorization. Data & Knowledge Engineering 69(8), 737–762 (2010)


