
DIPLOMARBEIT

Disjunctive Datalog
with Strong and Weak Constraints

Representational and Computational Issues

ausgeführt am

Institut für Informationssysteme E184/2
Abteilung für Datenbanken und Expertensysteme

der Technischen Universität Wien

unter Anleitung von

Univ.-Prof. Dott. Nicola Leone
und

Univ.-Ass. Dipl.-Ing. Gerald Pfeifer
als verantwortlich mitwirkendem Universitätsassistenten

durch

Wolfgang Faber
Hans-Kudlich Ring 21
2301 Groß-Enzersdorf

17. April 1998

“With the best will in the world,
we cannot always be completely
truthful or consistently rational”

Aldous Huxley

Dedicated to my parents

Acknowledgements

First of all, I would like to thank my supervisors, Nicola Leone and Gerald
Pfeifer, for their genuine support and fruitful discussions. Special thanks to
Gerald for his acribic (and time-consuming) proofreading.

A huge hug goes to Sonja Kovacic for her understanding and patience. In
addition, I am grateful to all of the people who had to bear additional burdens
because of my unavailibilities (cf. Section 3.2) during the creation of the thesis.

Gerald Kovacic has to be credited for the idea of including the example
application of land use planning given in Section 3.3, thanks also to Andrea
Weninger and Gernot Maierbrugger for subsequent discussions and suggestions
on this topic.

Last but not least nothing of this work could have been accomplished without
the support of my family, in particular of my parents.

Software Tools

The typesetting has been accomplished by LATEX2ε, using AMS extensions and
BibTEX bibliography management. Diagrams and pictures have been drawn
with xfig, text has been edited with GNU emacs. All work has been done on
Linux, FreeBSD, and Solaris systems running X11R6.

I

Contents

1 Introduction 1

2 Language Definition 4
2.1 Roadmap . 4
2.2 Syntax of Datalognot,∨,w . 5

2.2.1 Syntax Diversity . 5
2.2.2 Notation . 5
2.2.3 Constants, Variables, Terms 6
2.2.4 Predicates, Arities, Atoms, Literals 7
2.2.5 Facts, Rules, Constraints 9
2.2.6 Languages and Programs 15

2.3 Abstract Syntax . 17
2.3.1 Abstract Constructs . 18
2.3.2 From Concrete to Abstract Syntax 18

2.4 Properties of Abstract Programs 20
2.4.1 Grounding of Programs 22

2.5 Syntactically Equivalent Programs 25
2.6 Semantics of Datalog¬,not,∨,w 25

2.6.1 General Interpretations and Models 25
2.6.2 Herbrand Interpretations and Models 27
2.6.3 Minimal Model Semantics 31
2.6.4 Stable Model Semantics 33
2.6.5 Other Semantics . 37
2.6.6 Answer Sets – Semantics for Extended Programs 37
2.6.7 Parametrised Semantics for Programs with Weak Con-

straints . 39

3 Representing Knowledge in Datalog¬,not,∨,w 43
3.1 Abduction . 43

3.1.1 Minimum Cardinality Abduction 44
3.1.2 Priority Minimal Abduction 47
3.1.3 Penalisation-based Abduction 48

3.2 Planning . 50
3.2.1 Automated Timetabling 50
3.2.2 School Timetabling . 51

3.3 Graph Problems . 61
3.3.1 Graph-theoretic Preliminaries 61
3.3.2 Classical Minimum Spanning Tree 62

II

3.3.3 Minimum Spanning Tree of a Directed Graph 69
3.3.4 Minimum Steiner Trees 72

4 Algorithms 75
4.1 Unfoundedness . 75
4.2 Checking Unfounded-freeness . 77
4.3 Operators for the Computation of Stable Models 81
4.4 Possibly-true Conjunctions . 83
4.5 A Preliminary Algorithm for Datalognot,∨ Programs 84
4.6 Strong Constraints . 85
4.7 Where Weak Constraints Fit In 87

4.7.1 Objective Function . 87
4.7.2 Preferred Models and Objective Function Minima Coincide 90
4.7.3 Extension of the Algorithm to Compute One Preferred

Model . 94
4.7.4 An Example . 95
4.7.5 Complexity of the Algorithm 100
4.7.6 Computing all Preferred Stable Models 100

5 Architecture/System Description 102
5.1 Interface . 102
5.2 Frontends . 102

5.2.1 Native Extended Datalog 102
5.2.2 Diagnosis . 102
5.2.3 SQL3 . 104
5.2.4 Brave and Cautious Reasoning 104

5.3 Query Processor, Grounding, and Handling of Rules 104
5.4 Model Generator and Checker . 104

6 Research Issues 105

III

Chapter 1

Introduction

Disjunctive Datalog (Datalognot,∨) is considered as a very important tool for
knowledge representation and common-sense reasoning tasks by researchers of
the logic programming, database, and AI communities [EGM97, BG94, LMR92].
The necessity to extend the generic language Datalognot by disjunction is mo-
tivated by the ability to represent many important problems more naturally,
and it has even been shown that Datalognot,∨ can indeed express strictly
more problems than its disjunction-free counterpart under reasonable seman-
tics [EGM97] (unless the complexity classes P and NP coincide and thus the
polynomial hierarchy collapses, which is generally believed not to be the case).

In addition to the inclusion of disjunction, the benefit of having a means
to express explicit (or true) negation (as opposed to negation-as-failure) has
been motivated [GL91]. Informally, explicit negation allows for specifying neg-
ative knowledge directly, whereas negation-as-failure can only derive negative
information from the lack of contradictory positive knowledge.

Another extension of Datalognot,∨ is adding integrity constraints, which
are called strong constraints in our framework [BLR97b, BLR98]. While this
concept is well-known in the domain of databases, it has only recently been
proposed as an addition to Datalognot,∨, albeit the representation is a natural
generalisation of the syntactic structures of Datalognot,∨.

The extensions described above allow for elegant representations of classical
search and decision problems, but the representation of optimisation problems
is usually still somewhat awkward. Weak constraints were introduced together
with strong constraints in order to provide a means for specifying optimisation
problems naturally and elegantly, while again just generalising the notion of
a strong constraint in the sense that they do not have to be satisfied, but
rather they should preferably be satisfied [BLR97b, BLR97a, BLR98]. If there
is a choice between two different situations (possible worlds), where a weak
constraint is satisfied in one of them but violated in the other, the former is
preferred.

Apparently there are many situations, in which some weak constraints should
be considered more important than others. For this reason, the notion of priority
levels was introduced together with the notion of weak constraints [BLR97b,
BLR97a, BLR98].

In this thesis, we unify the abovementioned extensions to Datalog, and
while doing this, we extend the notion of weak constraints by a novel means of

1

specifying different importance of constraints: penalties or weights, which allow
for a more differentiated representation of precedence. We call the resulting
language Datalog¬,not,∨,w, and we will give a formal definition of its syntax
in Section 2.2.

We also introduce an abstract syntax, which is situated on a level between
syntax and semantics. It is used to treat the different constructs in a unified
way, thus defining equivalent programs on a syntactic level and easing the formal
definition of semantics.

Concerning semantics, lots of different approaches have been published re-
cently to capture the meaning of Datalognot,∨ programs [Prz91, Ros90, Prz95,
Dix95]. In spite of this babylonic situation, a generalisation of semantics can be
given, which allows to speak about “an arbitrary semantics” of a Datalognot,∨

program. We will define this general notion in Section 2.6, and after that we will
focus on a particular semantics – the Stable Model Semantics. We will also de-
fine the meaning of programs containing true negation by a transforming them
to programs containing only negation-as-failure. (Note that we need not define
an extension to semantics in order to capture the meaning of strong constraints,
since their meaning is already contained in the definition of abstract syntax.)

We will then give a definition for the meaning of weak constraints on top
of an arbitrary semantics. We define the notion of preferred models, which are
those models which violate the least number of constraints, taking into account
the priority level and penalty information.

Comprising the second part of the thesis, we give several case studies of how
the language Datalog¬,not,∨,w can be used to represent problems of different
domains, all of which have practical relevance, in a very natural way.

In particular, we show how several versions of abductive reasoning tasks can
be accomplished using Datalog¬,not,∨,w programs. It turns out that several
ways of abductive logic programming correspond to the different kinds of weak
constraints – minimum cardinality abduction corresponds to plain weak con-
straints, priority minimal abduction to weak constraints with priority layers,
and penalisation-based abduction to weighted weak constraints.

Then we focus on how planning and scheduling problems can be represented.
As an example we consider school timetabling and use a recent description
([CDM98]) of this problem, which makes heavy use of weak constraints involving
both the priority layer and weight features.

As a conclusion to these case studies, we consider graph optimisation prob-
lems. We cover in depth the problem of finding a minimum spanning tree of
undirected graphs, and also give representations for the problems of finding the
minimum spanning tree of directed graphs and finding the minimum Steiner
tree of an undirected graph, which can be obtained by simple extensions of the
original representation of the minimum spanning tree problem.

The final part of the thesis deals with the implementation of the Preferred
Stable Model Semantics. We extend an algorithm for computing stable models,
which has originally been presented in [LRS97].

We first give an extension of the algorithm which efficiently treats strong
constraints. Actually it enables us to abandon certain parts of the search space
as soon as some constraint is violated by a partly computed model.

Then this approach is extended to weak constraints by defining a suitable
objective function, which has to be minimised by all preferred models, and which
is in turn minimal only for the preferred models. We use a greedy approach to

2

find exactly one preferred model. In many cases this algorithm works very
efficiently and for most applications finding one model is sufficient. However,
we give a method which computes all preferred models without raising the
complexity considerably.

We argue about the complexity of the original algorithm which computes
exactly one preferred model, conclude that it stays within the same complexity
class as the original algorithm described in [LRS97] and on this basis we show
that the extension to computing all preferred models is in this class, too.

Finally, we analyse how the changes to the algorithm can be integrated into
the dlv system which has been developed and is currently enhanced at Institut
für Informationssysteme of Technische Universität Wien [ELM+97a, CEF+97].

To summarise, the main contributions of this thesis are:

• We give a formal definition of the Datalog¬,not,∨,w language, which con-
tains different previously defined extensions, as well as the new notion of
weighted weak constraints.

• We formally define the notion of preferred models, which assigns a meaning
to Datalog¬,not,∨,w programs.

• We analyse in depth how the Datalog¬,not,∨,w language can be used to
express various relevant problems.

• We give an algorithm which computes the preferred stable models of a
given program efficiently.

• We describe how this algorithm can be effectively integrated into an ex-
isting system which is capable of computing stable models (and answer
sets) for disjunctive datalog programs with strong constraints (and explicit
negation).

3

Chapter 2

Language Definition

2.1 Roadmap

In this chapter, we will first define the syntax for the language Datalog¬,not,∨,w,
i.e., disjunctive datalog with negation and strong and weak constraints and a
notion of explicit negation as introduced by [GL91]. This will be done incre-
mentally, and on the way to Datalog¬,not,∨,w, several other languages, which
have already been described in the literature, will be presented (cf. Definition
2.2.19), namely:

• pure Datalog

• Datalognot: Datalog with negation-as-failure

• Datalog∨: Datalog with disjunction in the head

• Datalognot,∨: Datalog with negation-as-failure and disjunction

• Datalognot,∨,s: Datalognot,∨ with strong constraints

• Datalognot,∨,c: Datalognot,∨ with strong and weak constraints

• Datalognot,∨,w: Datalognot,∨ with strong and weighted weak constraints

• Datalog¬: Datalog enhanced by explicit negation

• Datalog¬,not: Datalognot enhanced by explicit negation

• Datalog¬,∨: Datalog∨ enhanced by explicit negation

• Datalog¬,not,∨: Datalognot,∨ enhanced by explicit negation

• Datalog¬,not,∨,s: Datalognot,∨,s enhanced by explicit negation

• Datalog¬,not,∨,c: Datalognot,∨,c enhanced by explicit negation

• Datalog¬,not,∨,w: Datalognot,∨,w enhanced by explicit negation

4

Afterwards, a unifying “abstract syntax” will be defined, which will enable
us to treat programs of all these languages in a unified framework and which
will make certain low-level equivalences between programs explicit.

Last, a semantics of Datalog¬,not,∨,w will be defined. We will first describe
what semantics of Datalog¬,not,∨ look like and mention a few very impor-
tant semantics. As Datalog¬,not,∨,w is concerned, it will turn out that the
language Datalognot,∨,w is best described using a “parametrised” semantics,
which we will call preferred model semantics. By “parametrised” semantics we
mean that the semantics will only be fixed for a certain part of the language,
whereas for the remaining (well-researched) part any semantics can be chosen.
In this thesis one particular choice for this parameter, the stable model seman-
tics for Datalognot,∨,s and the computation of the preferred models under this
semantics will be dealt with in detail.

Alternative definitions for syntax and semantics of Datalog can be found
in [CGT90] and [Ull89]; for Datalognot, Datalog∨, and Datalognot,∨ see
[LMR92]; for Datalognot,∨,s and Datalognot,∨,c, refer to [BLR97b, BLR98].

2.2 Syntax of Datalognot,∨,w

2.2.1 Syntax Diversity

In the literature one can find lots of different syntactical definitions of Datalog.
Over the years, a Prolog-like syntax has been accepted by most of the researchers
in this area. For instance, [CGT90] defines Datalog syntax in a similar way
as we will, while [LMR92] takes a more logic-based approach, similar to [Pfe96].

Since the definitions in this section are purely syntactical, we will give short
informal hints about the meaning of the syntactical concepts before each defi-
nition to ease reading. After all, syntax definitions are made with semantics in
mind. The formal semantical definitions will be given in section 2.6.

2.2.2 Notation

Strings and sets of strings will be the main notational elements in the syntax
definition. We will use regular expressions, enhanced by the ellipsis (. . .) for
the characterisation of strings. A brief description of these regular expressions
follows:

Characters (i.e., string elements) are set in typewriter font, except for
“←”, “⇐”, “∨”, “¬ ”, “,”, “.”, and ’(’, ’)’ 1 , which are treated as characters,
too, while variables representing strings are printed in slanted font.

A regular expression with ellipsis is one of the following forms (operator
precedences correspond to the order of declaration below):

• A character c represents the string consisting only of the single character
c

• [cm − cn] represents the strings consisting of one of the characters between
cm and cn, using the usual alphabetical or numerical ordering.

1To avoid ambiguity, ’(’ and ’)’, are always written between single quotes when used as
characters in regular expressions.

5

• A string variable s represents the strings out of a specified set of strings

• smc. . . csn represents the concatenations of abs(n −m) + 1 strings out of
the specified set, separated by c, where sm to sn are string variables defined
over the same set of strings and c is some character.

• (r)2, where r is a regular expression, represents the strings described by
r.

• A regular expression followed by another regular expression: r1r2, repre-
sents the strings which are constructible by the concatenation of a string
represented by r1 and a string described by r2.

• r∗, where r is a regular expression, represents an empty string, the string
described by r, and the strings resulting of arbitrary many concatenations
to itself

• r1|r2, where r1 and r2 are regular expressions, represent the strings de-
scribed by r1 or those represented by r2.

N is the set of all non-negative integer numbers, N+the set of all positive
integer numbers. Z is the set of all integer numbers.

2.2.3 Constants, Variables, Terms

The most basic part of our language is having some means to represent entities.
An entity is anything which can be named. We call these names constants.

Definition 2.2.1 (Constants)
Constants is the set of all non-empty finite strings composed of letters, digits,
and underscores, starting with a lower-case letter, plus the set of all non-empty,
finite sequences of digits:

Constants = {([0− 9][0− 9]
∗
)|([a− z](|[a− z]|[A− Z]|[0− 9])∗)}

�

Example 2.2.1
x, 0815, planB, plan9fromOuterSpace, graph 1 ∈ Constants �

We also need a way to make statements without naming concrete entities.
That is, we need some names, which can represent any entity. These names are
called variables.

Definition 2.2.2 (Variables)
Variables is the set of all non-empty finite strings composed of letters, digits,
and underscores, starting with an upper-case letter:

Variables = {[A− Z](|[a− z]|[A− Z]|[0− 9])∗}

�

2Note that these brackets are not written between high commata.

6

Example 2.2.2
Placeholder, X1, VAR, V X 1 ∈ Variables �

If we make statements about a particular entity, we can make the same
statement about any entity. In other words, where a constant can appear, a
variable may appear as well. The generalised concept of both is called term.

Definition 2.2.3 (Terms)
Terms is the set consisting of all constants and all variables:

Terms = Constants ∪Variables

�

2.2.4 Predicates, Arities, Atoms, Literals

We do not just want to name entities, we want to make statements about them.
Predicates represent these statements. In the context of database theory, these
are also called relations.

Definition 2.2.4 (Predicates)
Predicates is the set of all non-empty finite strings composed of letters, digits,
and underscores, starting with a lower-case letter:3

Predicates = {[a− z](|[a− z]|[A− Z]|[0− 9])∗}

�

Example 2.2.3
planB, is weird film, predicate1, graph 1 ∈ Predicates �

When we make statements about entities, the number of entities concerned
in such a statement is called arity. When predicates are referred to, one usually
specifies the predicate name followed by a slash and the corresponding arity.

Definition 2.2.5 (Arity)
arity is a function, which associates a number to each predicate.

arity : Predicates→ N

�

Atoms are the combination of predicates and terms. While predicates just
give the means to make statements, atoms are used when we actually make
these statements.

Definition 2.2.6 (Atoms)
Atoms is the set of all predicate symbols followed by a number of terms, which is
determined by the predicate’s arity. These terms are enclosed in parentheses and

3Observe that syntactically Predicates ⊂ Constants; but as we shall see, the set-membership
of a particular string is fully determined by the context.

7

separated by commata. The terms t1 . . . tn are called parameters (in database
theory they are usually referred to as attributes).

Atoms ={p | p ∈ Predicates, arity(p) = 0} ∪

∪ {p′(′t1 , . . . ,tn
′)′ | p ∈ Predicates, t1 , . . . , tn ∈ Terms,

n ∈ N+, n = arity(p)}

�

Example 2.2.4 (is weird film/1)
is weird film(plan9fromOuterSpace) ∈ Atoms

arity(is weird film) = 1 �

Sometimes we do not just want to state something positively, but we want to
negate statements. We will present two flavours of negation: Explicit negation
and negation-as-failure, this separation has been introduced in [GL91].

Intuitively, explicit negation (denoted as ¬) corresponds to stating that
something is known not to be the case, whereas negation-as-failure (denoted as
not4) corresponds to stating that one does not have any contradicting knowledge
of something.

We refer to an atom as literal when we know in which context – positive or
negative – it occurs. We have several types of literals: explicitly negated literals,
negation-as-failure literals, and a combination of these two. This combination
is restricted to negation-as-failure of an explicitly negated literal. It makes
sense to say that we do not have any contradicting knowledge that something
is certainly not the case – but it does not make sense to say that we are sure
about the falsity of the fact that we do not have any contradicting knowledge
of something, because this is equivalent to being sure that something is true.
Expressed differently, not ¬ A 6≡ A, but ¬ not A ≡ A.

Definition 2.2.7 (Literals)
The explicitly negated literal set, Literals¬, is the set consisting of all atoms
and all explicitly negated atoms.

Literals¬ = Atoms ∪ {¬ a | a ∈ Atoms}

The negation-as-failure literal set, Literalsnot is the set consisting of all atoms
and all negation-as-failure atoms.

Literalsnot = Atoms ∪ {not a | a ∈ Atoms}

The extended literal set, Literals, is the set consisting of all explicitly negated
literals and all negation-as-failure explicitly negated literals.

Literals = Literals¬ ∪ {not l | l ∈ Literals¬}

�

4in the literature also “∼” or “non”

8

Definition 2.2.8
If L ⊆ Literalsnot, let

L+ = L ∪ Atoms

L− = L− Atoms

not (L) = {not a | a ∈ L+} ∪ {a | not a ∈ L−}

�

Example 2.2.5

naughty(john) ∈ Literals¬ ∩ Literalsnot ∩ Literals

not naughty(john) ∈ Literalsnot ∩ Literals

¬ naughty(Child) ∈ Literals¬ ∩ Literals,

not ¬ naughty(Child) ∈ Literals

�

2.2.5 Facts, Rules, Constraints

In the sequel several syntactic structures will be defined in two versions: one
in which explicit negation is not permitted, as in most of the literature, and
one in which explicit negation is allowed additionally. The latter version is
referred to with the attribute “extended”. Note that the extended structures
are strict generalisations of the non-extended, since Atoms ⊂ Literals¬ and
Literalsnot ⊂ Literals.

So far, we defined how to state something. Now we define how one says that
some statement is true in its own right. Such statements are called facts.

Definition 2.2.9 (Facts)
Facts is the set of atoms followed by a full-stop.

Facts = {A. | A ∈ Atoms}

The set of all extended facts is called Facts¬. Facts¬ is the set comprised of
explicitly negated literals followed by a full-stop.

Facts¬ = {L. | L ∈ Literals¬}

�

We might also want to state that at least one of several statements should
be true.

Definition 2.2.10 (Disjunctive Facts)
Facts∨ is the set of finite non-empty sequences of atoms, separated by ∨5, fol-
lowed by a full-stop.

Facts∨ = {A1 ∨ · · · ∨An. | A1 , . . . ,An ∈ Atoms, n ∈ N+}

5written as “v”; in the literature, sometimes “;” is used (Prolog heritage)

9

The set of extended disjunctive facts, Facts¬,∨ is comprised of finite sequences
of explicitly negated literals, separated by ∨, followed by a full-stop.

Facts¬,∨ = {L1 ∨ · · · ∨ Ln. | L1 , . . . ,Ln ∈ Literals¬, n ∈ N+}

�

Example 2.2.6
Imagine Santa Claus6: He has to keep a database about all the children. For
example if some child (here it is john) has been naughty, he stores it in his
database. Similarly, if he knew that john has not been naughty, he would store
the second fact. If he is not sure yet, he stores the disjunctive facts in the third
or fourth line, depending on whether his system supports explicit negation or
not.

naughty(john). ∈ Facts ∩ Facts∨ ∩ Facts¬ ∩ Facts¬,∨

¬ naughty(john). ∈ Facts¬ ∩ Facts¬,∨

naughty(john) ∨ nice(john). ∈ Facts∨ ∩ Facts¬,∨

naughty(john) ∨ ¬ naughty(john). ∈ Facts¬,∨

�

We also want to be able to say that one statement is sure to hold, if we know
that some other statements hold.

Definition 2.2.11 (Definite Rules)
Rules is the set of structures composed of one atom followed by ←7 and a
sequence of atoms, separated by commata and terminated with a full-stop.

Rules = {H ← B1 , . . . ,Bn. | H ,B1 , . . . ,Bn ∈ Atoms, n ∈ N}

The set of extended rules, Rules¬, consists of elements composed of one explic-
itly negated literal followed by ← and a sequence of explicitly negated literals,
separated by commata and terminated with a full-stop.

Rules¬ = {H ← B1 , . . . ,Bn. | H ,B1 , . . . ,Bn ∈ Literals¬, n ∈ N}

�

Example 2.2.7
Santa visits a child if it has been nice and also if it has not been naughty.

visit(C)← nice(C), child(C). ∈ Rules ∩Rules¬

visit(C)← ¬ naughty(C), child(C). ∈ Rules¬

�

Sometimes, one would like to say that a statement is sure to hold, if one
knows that some statements hold and there is no evidence that some other
statements hold.

6Do not take this too seriously; it should just illustrate how these syntactic forms look like.
7written as “:-”

10

Definition 2.2.12 (Normal Rules)
Rulesnot is defined as Rules, but negation-as-failure literals rather than just
atoms are allowed in the body.

Rulesnot = {H ← B1 , . . . ,Bn. | H ∈ Atoms,B1 , . . . ,Bn ∈ Literalsnot, n ∈ N}

Rules¬,not is defined as Rules¬, but general literals rather than just explicitly
negated literals are allowed in the body.

Rules¬,not = {H ← B1 , . . . ,Bn. | H ∈ Literals¬,B1 , . . . ,Bn ∈ Literals, n ∈ N}

�

Example 2.2.8
Santa will visit a child if he has no information that it has been naughty. He
will also visit a child if he has no reason to think that it has not been nice.

visit(C)← not naughty(C), child(C). ∈ Rulesnot

visit(C)← not ¬ nice(C), child(C). ∈ Rules¬,not

�

Now, one could want to say that at least one of several statements should
hold, if some other statements hold.

Definition 2.2.13 (Positive Rules)
Rules∨ is defined as Rules, but in the head a finite sequence of atoms, separated
by ∨, called disjunction, may occur.

Rules∨ = {H1 ∨ · · · ∨Hm ← B1 , . . . ,Bn. | H1 , . . . ,Hm,B1 , . . . ,Bn ∈ Atoms,

m ∈ N+, n ∈ N}

Rules¬,∨ is defined as Rules¬, but in the head a finite sequence of explicitly
negated literals, separated by ∨, may occur.

Rules¬,∨ = {H1 ∨ · · · ∨Hm ← B1 , . . . ,Bn. | H1 , . . . ,Hm,B1 , . . . ,Bn ∈ Literals¬,

m ∈ N+, n ∈ N}

�

Example 2.2.9
If a child has been naughty, Santa will bring her/him a tiny present if some is
left (and probably only if the child was also nice sometimes), or he will skip the
child’s house (if he has to hurry or no parcels are left or the child has never been
nice). Santa could use the second rule if he has a system supporting explicit
negation.

tiny present(C) ∨ skip(C)← naughty(C), child(C). ∈ Rules∨

tiny present(C) ∨ ¬ visit(C)← ¬ nice(C), child(C). ∈ Rules¬,∨

�

11

It is now straightforward to combine Definition 2.2.12 and Definition 2.2.13.

Definition 2.2.14 (Rules)
Rulesnot,∨ is defined as Rules, but literals rather than just atoms are allowed
in the body, and in the head a finite sequence of atoms, separated by ∨, may
occur.

Rulesnot,∨ = {H1 ∨ · · · ∨Hm ← B1 , . . . ,Bn. | H1 , . . . ,Hm ∈ Atoms,

B1 , . . . ,Bn ∈ Literalsnot,

m ∈ N+, n ∈ N}

Rules¬,not,∨ is defined as Rules¬, but arbitrary literals rather than just explicitly
negated literals are allowed in the body, and in the head a finite sequence of
explicitly negated literals, separated by ∨, may occur.

Rules¬,not,∨ = {H1 ∨ · · · ∨Hm ← B1 , . . . ,Bn. | H1 , . . . ,Hm ∈ Literals¬,

B1 , . . . ,Bn ∈ Literals,

m ∈ N+, n ∈ N}

�

Example 2.2.10
If there is no reason to assume that a child has been naughty, Santa will bring
him or her a medium or big present, depending on his finances and how nice
the child was. Also, if there is no reason to think that a child has not been nice,
Santa will bring him or her a medium present or at least he will not skip the
house.

med present(C) ∨ big present(C)← not naughty(C), child(C). ∈ Rulesnot,∨

med present(C) ∨ ¬ skip(C)← not ¬ nice(C), child(C). ∈ Rules¬,not,∨

�

Often, one wants to constrain (or restrict) the worlds as described by facts
and rules, which means expressing that some statements should not be valid
simultaneously. This concept is usually termed “integrity constraint”. We will
refer to “integrity constraints” as “constraints” or “strong constraints”.

Definition 2.2.15 (Strong Constraints)
Constraintsstrong is the set of finite non-empty sequences of negation-as-failure
literals, preceded by ←, separated by commata, and terminated by a full-stop.

Constraintsstrong = {← B1, . . . , Bn. | B1, . . . , Bn ∈ Literalsnot, n ∈ N+}

Constraints¬strong is the set of finite non-empty sequences of arbitrary literals,
preceded by ←, separated by commata, and terminated by a full-stop.

Constraints¬strong = {← B1, . . . , Bn. | B1, . . . , Bn ∈ Literals, n ∈ N+}

�

12

Example 2.2.11
It can never be the case that Santa visits a child when he skips its house. It is
not feasible that Santa has no reason to think that a child has been naughty but
will skip its house. It can not occur that a child has been naughty and not nice
and Santa will visit him or her. It is impossible that a child has been naughty
and not nice and there is no evidence that Santa will not visit him or her, since
it is sure that he will not come.

← skip(C), visit(C). ∈ Constraintsstrong

← not naughty(C), skip(C). ∈ Constraintsstrong

← naughty(C),¬ nice(C), visit(C). ∈ Constraints¬strong

← naughty(C),¬ nice(C), not ¬ visit(C). ∈ Constraints¬strong

�

The concept just defined can be generalised by stating that some statements
should preferably not be valid simultaneously. These are called weak (sometimes
also soft) constraints.

Definition 2.2.16 (Weak Constraints)
Constraintsweak is the set of finite non-empty sequences of negation-as-failure
literals, preceded by ⇐8, separated by commata, and terminated by a full-stop.

Constraintsweak = {⇐ B1, . . . , Bn. | B1, . . . , Bn ∈ Literalsnot, n ∈ N+}

Constraints¬weak is the set of finite sequences of general literals, preceded by ⇐,
separated by commata, and terminated by a full-stop.

Constraints¬weak = {⇐ B1, . . . , Bn. | B1, . . . , Bn ∈ Literals, n ∈ N+}

�

Example 2.2.12
It is not desirable that a child gets a big present if there is no reason to think
that it has been nice. It should possibly not be the case that a child has been
nice and Santa has no reason to assume that he will not skip its house, since he
should go there.

⇐ not nice(C), big present(C). ∈ Constraintsweak

⇐ not ¬ skip(C), nice(C). ∈ Constraints¬weak

�

In real life, there are weak constraints which are more important to be met
than others. To model this, we introduce layers of importance (or priorities),
where any single weak constraint in some layer will be more important than all
weak constraints in lower layers.

8denoted by “:∼”

13

Definition 2.2.17 (Layered (Weak) Constraints)
Constraintslayered is the set of constraints found in Constraintsweak, possibly
followed by a pair of square brackets, which enclose a positive integer followed
by a colon:

Constraintslayered = {W [l :] | l ∈ N+,W ∈ Constraintsweak} ∪ Constraintsweak

Constraints¬layered is the set of constraints found in Constraints¬weak, possibly
followed by a pair of square brackets, which enclose an integer followed by a
colon:

Constraints¬layered = {W [l :] | l ∈ N+,W ∈ Constraints¬weak} ∪ Constraints¬weak

�

Example 2.2.13
In Example 2.2.12, the second constraint is more important than the first, so
Santa introduces two layers, such that the constraint which is more important
resides in the higher priority layer.

⇐ not nice(C), big present(C).[1 :] ∈ Constraintsweak

⇐ not ¬ skip(C), nice(C).[2 :] ∈ Constraints¬weak

�

In many problems, most notably problems defined over graphs, one wants to
formulate weak constraints which are adorned by a weight, to be able to define
precedences of weak constraints in a more differentiated way. The combination
of weighted and layered weak constraints often leads to very elegant formulations
of such problems.

Definition 2.2.18 (Weighted (Weak) Constraints)
Constraintsweighted is the set of constraints of Constraintsweak, possibly followed
by a pair of square brackets, which enclose two integers separated by a colon,
where either of the integers may be left out, but not both of them:

Constraintsweighted ={W [l : w],W [: w] | l ∈ N+, w ∈ Z,W ∈ Constraintsweak}

∪ Constraintslayered

Constraints¬weighted is the set of constraints of Constraints¬weak, possibly followed
by a pair of square brackets, which enclose two integers separated by a colon,
where either of the integers may be left out, but not both of them:

Constraints¬weighted ={W [l : w],W [: w] | l ∈ N+, w ∈ Z,W ∈ Constraints¬weak}

∪ Constraints¬layered

�

14

Example 2.2.14
So, additionally, Santa thinks that it is good to assign a high weight to the
important constraint, because he plans to have other constraints in the second
layer, too. In contrast, the first one is not important to him at all, so he assigns
a neutral weight of 0 to it.

⇐ not nice(C), big present(C).[1 : 0] ∈ Constraintsweighted

⇐ not ¬ skip(C), nice(C).[2 : 100] ∈ Constraints¬weighted

�

Observation 1 (Relations between facts, rules, and constraints)
Note the following relations between the sets which have just been defined:

Facts ⊂ Facts∨

Rules ⊂ Rulesnot ⊂ Rulesnot,∨

Rules ⊂ Rules∨ ⊂ Rulesnot,∨

Constraintsweak ⊂ Constraintslayered ⊂ Constraintsweighted

The same holds for the extended versions:

Facts¬ ⊂ Facts¬,∨

Rules¬ ⊂ Rules¬,not ⊂ Rules¬,not,∨

Rules¬ ⊂ Rules¬,∨ ⊂ Rules¬,not,∨

Constraints¬weak ⊂ Constraints¬layered ⊂ Constraints¬weighted

We have already mentioned that the extended version of a syntactic form
strictly contains the non-extended form. F

2.2.6 Languages and Programs

At this point we are ready to define the languages already mentioned in section
2.1, and programs thereof.

Definition 2.2.19 (Datalog languages)

Datalog = Facts ∪Rules

Datalog
not = Facts ∪Rulesnot

Datalog
∨ = Facts∨ ∪Rules∨

Datalog
not,∨ = Facts∨ ∪Rulesnot,∨

Datalog
not,∨,s = Facts∨ ∪Rulesnot,∨ ∪ Constraintsstrong

Datalog
not,∨,c = Facts∨ ∪Rulesnot,∨ ∪ Constraintsstrong ∪ Constraintslayered

Datalog
not,∨,w= Facts∨ ∪Rulesnot,∨ ∪ Constraintsstrong ∪ Constraintsweighted

15

Datalog
¬ = Facts¬ ∪Rules¬

Datalog
¬,not = Facts¬ ∪Rules¬,not

Datalog
¬,∨ = Facts¬,∨ ∪Rules¬,∨

Datalog
¬,not,∨ = Facts¬,∨ ∪Rules¬,not,∨

Datalog
¬,not,∨,s = Facts¬,∨ ∪Rules¬,not,∨ ∪ Constraints¬strong

Datalog
¬,not,∨,c = Facts¬,∨ ∪Rules¬,not,∨ ∪ Constraints¬strong ∪ Constraints¬layered

Datalog
¬,not,∨,w= Facts¬,∨ ∪Rules¬,not,∨ ∪ Constraints¬strong ∪ Constraints¬weighted

�

We could also define (extended) Datalog with negation, disjunction, strong
and simple weak constraints, but since in the literature weak constraints appear
only together with layers (with different syntax, though), we do not give any
definition here, either.

While a Datalog language without constraints describes all possible facts
and rules, a corresponding program consists of some (i.e., finitely many) concrete
facts and rules.

Definition 2.2.20 (Datalog programs without constraints)

ΠDatalog = {P | P ⊂
finite

Datalog}

ΠDatalognot = {P | P ⊂
finite

Datalog
not}

ΠDatalog∨ = {P | P ⊂
finite

Datalog
∨}

ΠDatalognot,∨= {P | P ⊂
finite

Datalog
not,∨}

ΠDatalog¬ = {P | P ⊂
finite

Datalog
¬}

ΠDatalog¬,not = {P | P ⊂
finite

Datalog
¬,not}

ΠDatalog¬,∨ = {P | P ⊂
finite

Datalog
¬,∨}

ΠDatalog¬,not,∨= {P | P ⊂
finite

Datalog
¬,not,∨}

�

When speaking about programs with constraints, it is useful to distinguish
between facts and rules, strong constraints, weak constraints (if they are in the
corresponding language). Therefore they are usually represented as a pair or
triple.

16

Definition 2.2.21 (Datalog programs with constraints)

ΠDatalognot,∨,s = {〈P,S〉 | P ⊂
finite

Datalog
not,∨,

S ⊂
finite

Constraintsstrong}

ΠDatalognot,∨,c = {〈P,S,W〉 | P ⊂
finite

Datalog
not,∨,

S ⊂
finite

Constraintsstrong,

W ⊂
finite

Constraintslayered}

ΠDatalognot,∨,w = {〈P,S,W〉 | P ⊂
finite

Datalog
not,∨,

S ⊂
finite

Constraintsstrong,

W ⊂
finite

Constraintsweighted}

ΠDatalog¬,not,∨,s = {〈P,S〉 | P ⊂
finite

Datalog
¬,not,∨,

S ⊂
finite

Constraints¬strong}

ΠDatalog¬,not,∨,c = {〈P,S,W〉 | P ⊂
finite

Datalog
¬,not,∨,

S ⊂
finite

Constraints¬strong,

W ⊂
finite

Constraints¬layered}

ΠDatalog¬,not,∨,w = {〈P,S,W〉 | P ⊂
finite

Datalog
¬,not,∨,

S ⊂
finite

Constraints¬strong,

W ⊂
finite

Constraints¬weighted}

�

Observation 2 (Relations between languages and programs)
The following relations between languages, resp. sets of programs hold:

Datalog ⊂ Datalog
not ⊂ Datalog

not,∨

Datalog ⊂ Datalog
∨ ⊂ Datalog

not,∨

Datalog
not,∨ ⊂ Datalog

not,∨,s ⊂ Datalog
not,∨,c ⊂ Datalog

not,∨,w

ΠDatalog ⊂ ΠDatalognot ⊂ ΠDatalognot,∨

ΠDatalog ⊂ ΠDatalog∨ ⊂ ΠDatalognot,∨

ΠDatalognot,∨,c ⊂ ΠDatalognot,∨,w

Analogously for the corresponding extended languages and programs:

17

Datalog
¬ ⊂ Datalog

¬,not ⊂ Datalog
¬,not,∨

Datalog
¬ ⊂ Datalog

¬,∨ ⊂ Datalog
¬,not,∨

Datalog
¬,not,∨ ⊂ Datalog

¬,not,∨,s ⊂ Datalog
¬,not,∨,c ⊂ Datalog

¬,not,∨,w

ΠDatalog¬ ⊂ ΠDatalog¬,not ⊂ ΠDatalog¬,not,∨

ΠDatalog¬ ⊂ ΠDatalog¬,∨ ⊂ ΠDatalog¬,not,∨

ΠDatalog¬,not,∨,c ⊂ ΠDatalog¬,not,∨,w

Again, the extended languages and programs strictly contain their correspond-
ing non-extended counterparts.

F

2.3 Abstract Syntax

In the preceding section we have defined the various Datalog languages in a
very basic way, without mangling with semantical aspects at all, except for the
informal motivations we gave.

In this section we will describe abstractions over the syntactical constructs,
which already capture some semantic equivalences (these are just in the scope
of single rules, facts, etc., whereas a “real” semantics deals with the interaction
of these concepts), and ease semantics descriptions in Section 2.6, since abstract
syntax unifies the numerous types of programs.

2.3.1 Abstract Constructs

Although Facts, Facts∨, Rules, Rules∨, Rulesnot, Rulesnot,∨, and Constraintsstrong

were introduced as distinct syntactical constructs in Section 2.2, they all corre-
spond to one logical construct: a clause [Llo87]. This is reflected in Definition
2.3.1.

Definition 2.3.1 (Abstract Rule)
Abstract rules are pairs of sets: The first set of such a pair, called head, is a set
of explicitly negated atoms, the second, called Body, is a set of general literals.

Rulesabstract = {(H,B) | H ⊆ Literals¬, B ⊆ Literals}

�

Weak constraints are different. They do not have a corresponding con-
struct in classical logic, since in classical logic only absolute truth is considered,
whereas weak constraints are a means to define statements which should pos-
sibly be true.

Definition 2.3.2 (Abstract (Weak) Constraint)
Abstract (weak) constraints consist of a set of literals, one natural number
(representing the layer), and one integer number (the weight).

Constraintsabstract = {(B, l, w) | B ⊆ Literals, l ∈ N+, w ∈ Z}

�

18

Of course, our aim is dealing with programs over the abstractions which we
have just defined. We create a notion of the abstract program.

Definition 2.3.3 (Abstract Programs)
Abstract programs are finite sets consisting of abstract rules and abstract (weak)
constraints.

Programsabstract = {P | P ⊂
finite

(Rulesabstract ∪ Constraintsabstract)}

�

2.3.2 From Concrete to Abstract Syntax

Now we give a translation from the merely syntactical constructs into these
unifying abstract concepts. Note that lots of equivalences between facts and
rules, which were stated verbally in most of the literature, are made explicit by
this translation. E.g. “The order of the literals (resp. atoms) in the body or head
is not significant.”, “A fact can be seen as a rule with an empty conjunction as
its body.”, “A strong constraint can be seen as a rule with an empty disjunction
(which represents falsity) as head.”. Also note that because of Observation 1,
it is not necessary to define a translation for each type of facts and rules.

Definition 2.3.4 (Projection into Abstract Rules)

abstractrules : Facts¬,∨ ∪Rules¬,not,∨ ∪ Constraints¬strong → Rulesabstract

abstractrules(R) =







({H1, . . . , Hm}, ∅) if R = H1 ∨ · · · ∨Hm.

({H1, . . . , Hm}, {B1, . . . , Bn}) if R = H1, . . . , Hm ← B1, . . . , Bn.

(∅, {B1, . . . , Bn}) if R =← B1, . . . , Bn.

�

In the case of weak constraints, essentially we define the default value to be
1 if the layer information is missing and 0 if no weight is specified. Note that
this is de facto semantics on a very low level. Also note that again we need not
define a function for every type of weak constraints because of Observation 1.

Definition 2.3.5 (Projection into Abstract (Weak) Constraints)

abstractconstraints : Constraints¬weighted → Constraintsabstract

abstractconstraints(W) =







({L1, . . . , Ln}, 1, 0) ifW =⇐ L1, . . . , Ln.)

({L1, . . . , Ln}, l, 0) ifW =⇐ L1, . . . , Ln.[l :]

({L1, . . . , Ln}, 1, w) ifW =⇐ L1, . . . , Ln.[: w]

({L1, . . . , Ln}, l, w) ifW =⇐ L1, . . . , Ln.[l : w]

�

We now generalise Definitions 2.3.4 and 2.3.5 to programs. The definition
covers all programs we have defined in Definition 2.2.20 and Definition 2.2.21,
because of Observation 2.

19

Definition 2.3.6 (Projections into Abstract Programs)

abstract : ΠDatalog¬,not,∨ ∪ΠDatalog¬,not,∨,s ∪ΠDatalog¬,not,∨,w → Programsabstract

abstract(P) =







{abstractrules(R) | R ∈ P} if P ∈ ΠDatalog¬,not,∨

{abstractrules(R) | R ∈ P1 ∪ S} if P = 〈P1,S〉

{abstractrules(R) | R ∈ P1 ∪ S} ∪

∪ {abstractconstraints(W) |W ∈ W} if P = 〈P1,S,W〉

�

Example 2.3.1
We consider some tiny part of Santa’s Datalognot,∨,w program:

P1
Santa = {naughty(john) ∨ ¬ naughty(john).,

med present(C) ∨ ¬ skip(C)← not ¬ nice(C), child(C).

← not naughty(C), skip(C).

⇐ not ¬ skip(C), nice(C).[2 : 100]}

The abstract program is:

abstract(P1
Santa) = {({naughty(john),¬ naughty(john)}, ∅),

({med present(C),¬ skip(C)}, {not ¬ nice(C), child(C)})

(∅, {not naughty(C), skip(C)})

({not ¬ skip(C), nice(C)}, 2, 100)}

�

2.4 Properties of Abstract Programs

In this section we define several sets and functions over abstract programs for
later use in Section 2.6.

A syntactical notice: Given a set S, P(S) denotes the power set (i.e., the set
containing all subsets) of S; Sn (n ≥ 1) denotes the cartesian product of S with
itself n times.

In Section 2.2 and Section 2.3 we have defined sets of various constructs. Now
we define the sets of those constructs which actually occur in a given program.

Definition 2.4.1 (Literals of an Abstract Program)
The literals in a program are all literals which occur in the head or in the body
of an abstract rule or in an abstract constraint.

literals : Programsabstract → P(Literals)

literals(P) =
⋃

(H,B)∈P)

(H ∪B) ∪
⋃

(C,l,w)∈P

C

�

20

Definition 2.4.2 (Atoms of an Abstract Program)
We begin by defining the explicitly negated literal in a general literal, denoted
literals¬L:

literals¬L : Literals→ Literals¬

literals¬L(L) =

{

M if L = not M

L else

The atom of an explicitly negated literal, denoted atomsL, is defined as follows:

atomsL : Literals¬ → Atoms

atomsL(L) =

{

A if L = ¬ A

L else

Since in every general literal there is at most one atom, the atoms of an abstract
program can be defined by using literals and the two helper functions defined
above:

atoms : Programsabstract → P(Atoms)

atoms(P) = {A | L ∈ literals(P), A = atomsL(literals¬L(L))}

We also define the set of explicitly negated literals of a program similarly:

literals¬ : Programsabstract → P(Literals¬)

literals¬(P) = {C | L ∈ literals(P), C = literals¬L(L)}

�

Definition 2.4.3 (Predicates of an Abstract Program)
Again we first define a simple function which maps an atom to the predicate
which occurs in it:

predicatesA : Atoms→ Predicates

predicatesA(A) =







A if A ∈ Predicates

P if A = P ′(′t1, . . . , tn
′)′, P ∈ Predicates,

t1, . . . , tn ∈ Terms

Now it is easy to generalise this to abstract programs:

predicates : Programsabstract → P(Predicates)

predicates(P) = {P | A ∈ atoms(P), P = predicatesA(A)}

�

Definition 2.4.4 (Constants of an Abstract Program)
Not all terms are constants, so in order to determine the constants of an atom
we have to take the intersection between the set of terms in this atom and all
constants.

constantsA : Atoms→ P(Constants)

constantsA(A) =







∅ if A ∈ Predicates

{t1, . . . , tn} ∩ if A = P ′(′t1, . . . , tn
′)′, P ∈ Predicates,

∩ Constants t1, . . . , tn ∈ Terms

21

We proceed analogously to Definition 2.4.3, but if there is no constant at all in
the program, we take an arbitrary one (in our case it is a).

constants : Programsabstract → P(Constants)

constants(P) =

{⋃

A∈atoms(P) constantsA(A) if
⋃

A∈atoms(P) constantsA(A) 6= ∅

{a} else

�

Since the logical equivalent of abstract rules are clauses (cf. e.g. [Llo87]),
variables appearing in abstract rules have to be considered universally quanti-
fied. Thus they have no global meaning, but one which is limited to exactly one
rule. This means that it does not really make sense to determine the set of all
variables in a program since two occurrences of the same variable in different
abstract rules or constraints do not have the same meaning. Thus we define the
set of variables in an abstract rule or constraint.

Definition 2.4.5 (Variables in an Abstract Rule or Constraint)
The function which maps an atom to the set of all variables occurring in it is
defined similar to the function which maps an atom to the set of all constants
in it, see Definition 2.4.4

variablesA : Atoms→ P(Variables)

variablesA(A) =







∅ if A ∈ Predicates

{t1, . . . , tn} ∩ if A = P ′(′t1, . . . , tn
′)′, P ∈ Predicates,

∩ Variables t1, . . . , tn ∈ Terms

variables : Rulesabstract ∪ Constraintsabstract → P(Variables)

variables(R) =







⋃

L∈H∪B

variablesA(atomsL(L)) if R = (H,B)

⋃

L∈B

variablesA(atomsL(L)) if R = (B, l, w)

�

2.4.1 Grounding of Programs

Variables are just placeholders for constants. So the meaning of a program
should not change if we substitute each occurrence of a variable in some abstract
rule or constraint by all constants occurring in the program, one at a time, and
consider the set of all abstract rules and constraints which are constructible in
this way.

Before we proceed, we have to define what “to substitute a constant for a
variable” formally means.

Definition 2.4.6 (Substitutions)
A substitution is a set of mappings from variables to terms, where for each
variable at most one mapping may exist. A mapping from a variable to itself is

22

not allowed. Formally:

Substitutions = {V1 7→ t1, . . . , Vn 7→ tn | V1, . . . , Vn ∈ Variables,

t1, . . . , tn ∈ Terms, n ≥ 1
∧

1 ≤ i ≤ n

1 ≤ j ≤ n

i 6= j

(2.1)

Substitutions = {V1 7→ t1, . . . , Vn 7→ tn |
t1, . . . , tn ∈ Terms, n ≥ 1

�

Definition 2.4.7 (Application of Substitutions)
If a substitution is to be applied to a syntactic structure, this is written in
postfix notation. Let σ ∈ Substitutions, t ∈ Terms, A ∈ Atoms, M ∈ Literals¬,
L ∈ Literals, (H,B) ∈ Rulesabstract , (C, l, w) ∈ Constraintsabstract :

tσ =

{

t1 if t 7→ t1 ∈ σ

t else

Aσ =







A if A ∈ Predicates

P ′(′t1σ, . . . , tnσ′)′ if A = P ′(′t1, . . . , tn
′)′,

t1, . . . , tn ∈ Terms

Mσ =

{

Mσ if M ∈ Atoms

¬ Aσ if M = ¬ A,A ∈ Atoms

Lσ =

{

Lσ if L ∈ Literals¬

not Mσ if L = not M,M ∈ Literals¬

(H,B)σ =({Aσ | A ∈ H}, {Lσ | L ∈ B})

(C, l, w)σ=({Lσ | L ∈ C}, l, w)

�

At this point we may formulate what we have intuitively described above:
A function which maps general abstract programs to so-called ground abstract
programs (i.e., no variables occur in the program).

Definition 2.4.8 (Grounding)
A ground program consists of all abstract rules and constraints of the original
program, where the variables have been substituted by every combination of
all constants occurring in the program. So for every rule (or constraint) R we
determine the set of all substitutions ΣR which map the variables in it to some
combination of constants in the program (recall that the scope of a variable is

23

restricted to one rule or constraint), and apply every substitution in this set to
R. The set of all resulting rules is the ground program.

grounding : Programsabstract → Programsabstract

grounding(P)={Rσ | R ∈ P, σ ∈ ΣR}

where

vi 6= vj ,

(c1, . . . , cn) ∈ constants(P)n,
n = |variables(R)|}

ΣR={{v1 7→ c1, . . . , vn 7→ cn} | v1, . . . , vn ∈ variables(R),
∧

1 ≤ i ≤ n1 ≤ j ≤ ni 6= jvi 6= vj , (c1, . . . , cn) ∈ constants(P)n, n = |variables(R)|}

�

Observation 3
The grounding of a ground abstract program is idempotent.

∀P ∈ Programsabstract : grounding(P) = grounding(grounding(P))

F

Example 2.4.1
Again we take a snippet of Santa’s Datalognot,∨,w program:

P2
Santa =

{naughty(john) ∨ ¬ naughty(john).,

nice(sue).,

naughty(jim).,

med present(C) ∨ ¬ skip(C)← not ¬ nice(C), child(C).,

← skip(C), visit(C).,

⇐ not ¬ skip(C), nice(C).[2 : 100]}

P2,A
Santa = abstract(P2

Santa) =

{({naughty(john),¬ naughty(john)}, ∅),

({nice(sue)}, ∅),

({naughty(jim), ∅),

({med present(C),¬ skip(C)}, {not ¬ nice(C), child(C)}),

(∅, {skip(C), visit(C)}),

({not ¬ skip(C), nice(C)}, 2, 100)}}

For the first three abstract rules ΣR = ∅, since no variables occur in them.
The other abstract rules and the abstract constraint all contain one variable C,
so the respective ΣRs for them are the variable C, substituted by all constants

24

occurring in the abstract program, constants(P2,A
Santa) = {john, sue, jim}: ΣR =

{σ1, σ2, σ3}, σ1 = {C 7→ john}, σ2 = {C 7→ sue}, σ3 = {C 7→ jim}. Note that it
is just because of the simplicity of the example that all ΣRs are equal.
The result of applying the substitutions is:

grounding(P2,A
Santa)) =

{({naughty(john),¬ naughty(john)}, ∅),

({nice(sue)}, ∅),

({naughty(jim), ∅),

({med present(john),¬ skip(john)}, {not ¬ nice(john), child(john)}),

({med present(sue),¬ skip(sue)}, {not ¬ nice(sue), child(sue)}),

({med present(jim),¬ skip(jim)}, {not ¬ nice(jim), child(jim)}),

(∅, {skip(john), visit(john)}),

(∅, {skip(sue), visit(sue)}),

(∅, {skip(jim), visit(jim)}),

({not ¬ skip(john), nice(john)}, 2, 100)}}

({not ¬ skip(sue), nice(sue)}, 2, 100)}}

({not ¬ skip(jim), nice(jim)}, 2, 100)}}

�

2.5 Syntactically Equivalent Programs

Using abstract programs and the grounding mechanism, we are now able to
express equivalences on a low syntactical level.

Definition 2.5.1 (Syntactically Equivalent Programs)
Two programs P1,P2 ∈ (ΠDatalognot,∨,s ∪ ΠDatalognot,∨,w) are syntactically
equivalent, denoted as P1 ≡S P2, iff the corresponding grounded abstract pro-
grams are identical.

P1 ≡S P2 ⇐⇒ grounding(abstract(P1)) = grounding(abstract(P2))

�

Example 2.5.1
The following programs are equivalent:

P1
eq = {a(X) ∨ a(s)← b(X).,

⇐ a(C),¬ f(s).[1 : 4],

← b(V), b(V).}

P2
eq = {a(X)← b(X).,

⇐ a(s),¬ f(s).[1 : 4],

← b(s).}

25

P3
eq = {a(s)← b(X), b(s).,

⇐ a(X),¬ f(X).[1 : 4],

← b(V).}

�

2.6 Semantics of Datalog¬,not,∨,w

The background of this section is mathematical logic, but we do not define
semantics for arbitrary first order languages (as it is done in [LMR92], e.g.). We
simply adapt results of this broader field to our notion of abstract programs.

Since the extended languages and the languages containing weak constraints
are comparatively novel in research, they will be dealt with later on.

Here are some abbreviations, which will be used throughout this and later
chapters:

2.6.1 General Interpretations and Models

An interpretation associates some meaning to an abstract program. We describe
this by transforming our syntactical constructs to a different domain. So we have
to define a mapping from constants to objects in this different domain, and a
mapping from predicate symbols to functions, which associate either true or
false to any given n-tuple, where n must of course match the predicate symbol’s
arity. This describes so-called total interpretations (everything is either true or
false). There is also the notion of partial interpretations, which extends total
semantics by providing a third truth value (undefined).

One could loosely describe this formalism as a “context switch” or homomor-
phism between statements in the given language to statements in some different
context.

One remark: We did not mention what to do with variables. Since variables
represent constants, it is sufficient to consider grounded programs. Otherwise,
it would have been necessary to rename the variables of each abstract rule or
constraint (since the scope of meaning of one variable is a single abstract rule
or constraint) and to define a variable assignment, mapping variables to some
domain objects. Then, every variable assignment should have been considered
with a given interpretation. When considering variable assignments instead of
grounded programs, the results do not differ.

Definition 2.6.1 ((Total) Interpretations)
An interpretation I of a grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ ΠDatalognot,∨,w , consists of:

• a set D, called the domain

• a function fc : constants(P) → D, mapping each constant of P to an
element of D

• for each p ∈ predicates(P) a function fp : D|arity(p)| → {true, false}

• a function F , associating each p ∈ predicates(P) with the appropriate
fp

26

We denote I as the triple 〈D, fc, F 〉. �

We now give the function which transforms atoms into the domain of an
interpretation I.

Definition 2.6.2 (Evaluation of Ground Atoms in an Interpretation)
Let I = 〈D, fc, F 〉

evalIA : Atoms→ {true, false}

evalIA =







fA if A ∈ Predicates, F (A) = fA

fp(t
I
1 , . . . , tIn) if A = p′(′t1, . . . , tn

′)′,

p ∈ Predicates, t1, . . . , tn ∈ Constants,

F (p) = fp, fc(t1) = tI1 , . . . , fc(tn) = tIn

�

Note that evalIA is only defined for ground atoms. This is no restriction
since for every program a syntactically equivalent ground program exists: the
one obtained by grounding it.

An interpretation describes a possible world. We are interested in those
worlds which are consistent with our facts, rules and constraints. A fact, rule
or constraint is said to be satisfied by I if it is consistent with the hypothetical
world described by I. Note that we do not consider extended programs yet.

Definition 2.6.3 (Satisfaction of Abstract Rules and Constraints)
Given a (total) interpretation I = 〈D, fc, F 〉, an abstract rule (H,B) ∈ Rulesabstract
is satisfied, if and only if at least one atom in the head evaluates to true in I,
or at least one literal in the body evaluates to false in I.

I |= (H,B)⇐⇒ ∃A ∈ H : evalIA(A) = true

∨

∃L ∈ B ∩ Atoms : evalIA(L) = false

∨

∃ not A ∈ B − Atoms : evalIA(A) = true

Similarly, an abstract constraint (C, l, w) ∈ Constraintsabstract is satisfied if
and only if at least one literal in the constraint evaluates to false in I.

I |= (C, l, w)⇐⇒ ∃L ∈ C ∩ Atoms : evalIA(L) = false

∨

∃ not A ∈ C − Atoms : evalIA(A) = true

�

Definition 2.6.4 (Models)
An interpretation I is called a model of a grounded abstract program P =
grounding(abstract(P ′)), P ′ ∈ ΠDatalognot,∨,w , if all abstract rules are satis-
fied. Note again that we defer the definition of the meaning of abstract con-
straints and thus weak constraints) to Section 2.6.7.

Models(P) = {I | ∀r ∈ grounding(P) ∩ Rulesabstract : I |= r}

�

27

2.6.2 Herbrand Interpretations and Models

The model theory introduced in Section 2.6.1 is useful if one wants to prove that
a given program satisfies a specification, but it is impracticable for computation
or general analysis of the program, because one would have to consider infinitely
many interpretations.

But a program in our language can not express more than is in its structure.
Jacques Herbrand and Thoralf Skolem showed independently that there is an
isomorphism between any model and one particular “structural” model. These
“structural” interpretations are called Herbrand interpretations.

In order to construct this interpretation for a given ground abstract program,
we provide some preliminary definitions first:

Definition 2.6.5 (Herbrand Universe)
The Herbrand Universe is the set of basic building blocks for the Herbrand Inter-
pretation. Given a grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ Π(Datalognot,∨,w) it is the set of constants in P:

HU(P) = constants(P)

�

The Herbrand Universe is rather trivial here, but in general first order logic
it is more complicated due to function symbols, which we do not have in our
languages.

Definition 2.6.6 (Herbrand Base)
The Herbrand Base is what will be the domain set of the Herbrand Interpreta-
tion. It is simply the set of all atoms constructible out of the predicate and con-
stant symbols in a given grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ ΠDatalognot,∨,w .

HB(P) = {p | p ∈ predicates(P), arity(p) = 0}

∪

{p′(′t1 , . . . , tn
′)′ | p ∈ predicates(P),

t1 , . . . , tn ∈ HU (P), n = arity(p)}

Sometimes we also need the notion of all negated atoms (negation-as-failure) in
the Herbrand Base, denoted as HBnot:

HBnot(P) = {not a | a ∈ HB(P)}

�

Observation 4
The Herbrand Base of a grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ ΠDatalognot,∨,w corresponds to the atoms in P.

∀P ∈ ΠDatalognot,∨,w : HB(P) = atoms(P)

F

28

Definition 2.6.7 ((Total) Herbrand Interpretation)
A Herbrand Interpretation of an abstract grounded program P, where P =
grounding(abstract(P ′)), P ′ ∈ ΠDatalognot,∨,w , is an interpretation I with
fixed domain and constant-mapping function, I = 〈HB(P), id, F 〉, where id is
the identity function, and F is arbitrary.

Representing I by F (the domain and constant-mapping function are fixed
in all Herbrand Interpretations) is cumbersome, an easier method exists: Given a
grounded abstract program P = grounding(abstract(P ′)), P ′ ∈ ΠDatalognot,∨,w ,
and a particular Herbrand Interpretation I, we can identify two sets of atoms:

F+ = {A | evalIA(A) = true,A ∈ HB(P)}

F− = { not A | evalIA(A) = false,A ∈ HB(P)}

F+ ∪ atoms(F−) = HB(P), F+ ∩ atoms(F−) = ∅

We can represent I simply by using F+ ∪ F−, because F is completely deter-
mined in this way. We will therefore refer to F+ ∪ F− if we write a Herbrand
Interpretation I. �

Definition 2.6.8 (Satisfaction in Herbrand Interpretations)
Using the characterisation in Definition 2.6.7, one can simplify Definition 2.6.3:
Given a Herbrand Interpretation I of a grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ ΠDatalognot,∨,w , an abstract rule (H,B) ∈ P is satisfied, if and only if at
least one atom in the head is true in I, or at least one literal in the body is false
in I.

I |= (H,B)⇐⇒ (H ∩ I 6= ∅)

∨

(B * I)

Similarly, an abstract constraint (C, l, w) ∈ P is satisfied, if and only if at
least one literal of the constraint is false in I.

I |= (C, l, w)⇐⇒ C * I

If an abstract rule or constraint is not satisfied w.r.t. a Herbrand Interpre-
tation I, it is called violated (w.r.t. I). �

Definition 2.6.9 (Herbrand Model)
A (total) Herbrand Model of a grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ ΠDatalognot,∨,w is a Herbrand Interpretation which is also a model as de-
fined in Definition 2.6.4, possibly using the simplified satisfaction criterion in
Definition 2.6.8.

ModelsH(P) = {I+ | I ⊆ (HB(P) ∪HBnot(P)), I+ ∩ atoms(I−) = ∅,

I+ ∪ atoms(I−) = HB(P),∀r ∈ P ∩ Rulesabstract : I |= r}

�

For better readability, (total) Herbrand Models are referred to by just their
positive atoms, in contrast to Herbrand Interpretations.

29

This definition of models and interpretations relies on the fact that all atoms
are interpreted as either true or false but nothing else. In particular, we can not
leave an atom undefined.

But sometimes, it makes indeed more sense to leave some atoms undefined:
In cases where we do not know anything about the truth of an atom. See for
instance [AHV95] for a more sophisticated motivation.

Interpretations which allow for the “truth value” undefined are referred to
as “partial interpretations”. In the literature, they are also called “3-valued
interpretations”, but according to [Prz91] this term is not the best choice, since
the implication operator ← has a different semantics than its counterpart in
3-valued logic.

Definition 2.6.10 (Partial (Herbrand) Interpretation)
Partial Interpretations and Partial Herbrand Interpretations are defined anal-
ogously to Definition 2.6.1 and Definition 2.6.7, in which Total Interpretations
and Total Herbrand Interpretations have been defined. The difference is that
the functions for a predicates in this case have the range {true, undefined,
false} rather than just {true, false}.

For this reason, also the evalIAP
function for a Partial Interpretation is

defined over the range {true, undefined, false} instead of {true, false}.
So Partial Herbrand Interpretations are Partial Interpretations of an abstract

grounded program P, where P = grounding(abstract(P ′)), P ′ ∈ ΠDatalognot,∨,w .
They are of the form 〈HB(P), id, F 〉, where id is the identity function and F is
arbitrary.

When we want to represent a Partial Herbrand Interpretation I, we can
identify three sets of atoms (as opposed to two in the total case):

F+ = {A | evalIAP
(A) = true,A ∈ HB(P)}

F− = {not A | evalIAP
(A) = false,A ∈ HB(P)}

Fu = {A | evalIAP
(A) = undefined,A ∈ HB(P)}

F+ ∪ atoms(F−) ∪ Fu = HB(P)

F+ ∩ atoms(F−) = ∅, F+ ∩ Fu = ∅, atoms(F−) ∩ Fu = ∅

Since the domain and the mapping of constants are fixed in a (Partial) Herbrand
Interpretation I, we will refer to I by F+ ∪ F−, because Fu = HB(P)− (F+ ∪
atoms(F−)), and thus F is fully determined by this representation. �

We will only describe satisfaction in Partial Herbrand Interpretations. For
general Partial Interpretations the definition is similar.

Definition 2.6.11 (Satisfaction in Partial Herbrand Interpretations)
This definition is derived from [Prz90, Prz91]. Given a Partial Herbrand In-
terpretation I of a grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ ΠDatalognot,∨,w , an abstract rule (H,B) ∈ P is satisfied, if and only if at
least one atom in the head is true in I, or at least one literal in the body is
false in I, or there is at least one undefined atom in the head and at least one
undefined literal in the body.

30

I |= (H,B)⇐⇒(H ∩ I 6= ∅)

∨

(B ∩ not (I) 6= ∅)

∨

((H − atoms(I) 6= ∅) ∧ (atoms(B)− atoms(I) 6= ∅)

Similarly, given a Herbrand Interpretation I ⊆ (HB(P) ∪ HBnot(P)) of a
grounded abstract program P = grounding(abstract(P ′)), P ′ ∈ ΠDatalognot,∨,w ,
an abstract constraint (C, l, w) ∈ P is satisfied, if and only if at least one literal
of the constraint is false in I.

I |= (C, l, w)⇐⇒ C * I

�

Note that constraints cannot be satisfied by undefined literals only.

Definition 2.6.12 (Partial Herbrand Model)
A Partial Herbrand Model of a grounded abstract program P, where P =
grounding(abstract(P ′)), P ′ ∈ Datalognot,∨,w, is a Partial Herbrand In-
terpretation of this program which satisfies all abstract rules of the grounded
program.

ModelsHP(P) = {I | I ⊂ (HB(P) ∪HBnot(P)), I+ ∩ atoms(I−) = ∅

∀r ∈ P ∩ Rulesabstract : I |= r}

�

Note that a Partial Herbrand Model cannot be represented by positive atoms
only, since the information about the undefined atoms would be lost.

Observation 5 (Relation between Partial and Total Models)
Total Herbrand Models can be viewed as a special case of Partial Herbrand
Models: A Partial Herbrand Model I of a grounded abstract program P =
grounding(abstract(P ′)), P ′ ∈Datalognot,∨,w, is called Total Herbrand Model,
iff atoms(I) = HB(P). F

A semantics of a program are Herbrand Models which possibly satisfy addi-
tional criteria. So a semantics is a subset of the set of Herbrand Models, and as
in the case of Models total and partial semantics exist.

Definition 2.6.13 (Total Semantics)
A total semantics SEMT (P) of some grounded abstract program P, where P
= grounding(abstract(P ′)), P ′ ∈ Datalognot,∨,w, is a subset of all Total
Herbrand Models ModelsH(P) of this program.

SEMT (P) ⊆ ModelsH(P)

�

31

Definition 2.6.14 (Partial Semantics)
A partial semantics SEMP (P) of some grounded abstract program P, where
P = grounding(abstract(P ′)), P ′ ∈ ΠDatalognot,∨,w , is a subset of all Partial
Herbrand Models ModelsHP(P) of this program.

SEMP (P) ⊆ ModelsHP(P)

�

In this thesis, we will not consider any partial semantics in detail, but we will
cite some references to partial semantics in Section 2.6.5, and our parametrised
semantics for weak constraints, which will be defined in Section 2.6.7, also ap-
plies to partial semantics.

In the sequel, we will often refer to Herbrand Models simply as models, and
to Herbrand Interpretations as interpretations, for the sake of simplicity.

2.6.3 Minimal Model Semantics

In general, a program can have several models:

Example 2.6.1
The following simple example describes the knowledge one might have about
some person and the weather:

PMM1
={happy., rains., happy ← sunny.}

Pg,A
MM1

=grounding(abstract(PMM1
)) =

{({happy}, ∅), ({rains}, ∅), ({happy}, {sunny})

We know that the person is happy and that it rains. We also know that if
it is sunny, the person is always happy.
PMM1

has the following models: M1 = {happy, rains}, M2 = {happy, rains,

sunny}, i.e., ModelsH(Pg,A
MM1

) = {M1,M2}.
While M1 is feasible and follows directly from our definition, M2 is one

possible situation, but the information sunny does not follow directly from our
rules, but assuming its truth does not cause any inconsistency. �

As suggested by the example above, if M1,M2 ∈ ModelsH(P) of a ground
abstract program P, and M1 (M2, then M2 contains some information which
can be safely assumed additionally. It is a possible scenario in a world which
is described generically by M1. Therefore, a model which is minimal w.r.t. ⊂
describes a world in which only those atoms are true which are necessarily true
in some family of similar worlds.

Definition 2.6.15 (Minimal Models)
Let P = grounding(abstract(P ′)), P ′ ∈ ΠDatalognot,∨,w , be a grounded ab-
stract program, the set of minimal models of P (and also P’) is denoted as
MM(P) and defined as follows:

MM(P) = {M |M ∈ ModelsH(P), @M∗ ∈ ModelsH(P) : M∗ ⊂M}

�

32

In the case of definite programs, one can show that a model exists for every
program, and that exactly one minimal model exists w.r.t. set inclusion. For a
proof, cf. [Llo87].

But in the general case of P ∈ ΠDatalognot,∨,w , there might be several Mini-
mal Models, as the following example illustrates:

Example 2.6.2

PMMII
={a ∨ b←, c← a}

Pg,A
MMII

= grounding(abstract(PMMII
)) ={({a, b}, ∅), ({c}, {a})}

ModelsH(Pg,A
MMII

) = {M1,M2,M3,M4}

M1 = {b} M2 = {a, c} M3 = {b, c} M4 = {a, b, c}

Since M1 ⊂ M3 ⊂ M4 and M2 ⊂ M4, but M1 * M2 and M2 * M1,

MM(Pg,A
MMII

) = {M1,M2} holds. �

2.6.4 Stable Model Semantics

The Stable Model Semantics was originally defined by Michael Gelfond and
Vladimir Lifschitz for normal programs in [GL88], and has later been extended
to disjunctive programs by Teodor Przymusinski in [Prz91] and by Gelfond and
Lifschitz in [GL91].

Usually, this semantics is defined by the so-called Gelfond-Lifschitz trans-
form. We will reproduce this transform here, but note that its semantics can
also be defined in other terms, as shown by S. Brass and J. Dix in [BD97], which
allows for a better comparison to other semantics.

It should also be mentioned that independently N. Bidoit and C. Froidevaux
described the “Default Model Semantics”, which is based on default logic, while
the stable model semantics is based on autoepistemic logic. They showed in
[BF91a, BF91b] that this semantics is equivalent to the Stable Model Semantics.

The Gelfond-Lifschitz transform eliminates negation-as-failure literals in the
bodies of rules: For any interpretation, those rules are discarded, in which
negation-as-failure literals occur that are false w.r.t. the interpretation. All re-
maining negation-as-failure literals are subsequently erased, yielding a negation-
free program.

Definition 2.6.16 (Gelfond-Lifschitz transform [Prz91, GL88])
Given a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈
ΠDatalognot,∨,w , and an interpretation I of P:

PI = {(H,B′) | (H,B) ∈ P,∀ not A ∈ B : not A ∈ I, B′ = B ∩ Atoms}

�

Example 2.6.3
Consider the following program Pstable:

33

Pstable = {a ∨ b← not c., (2.2)

c← a, not b.} (2.3)

The corresponding grounded abstract program Pg,A
stable is:

Pg,A
stable ={({a, b}, {not c}), (2.4)

({c}, {a, not b})} (2.5)

since abstract(Pstable) is propositional and therefore already ground.

HB(Pg,A
stable) = {a, b, c} and there are eight interpretations:

I0 = {not a, not b, not c}, I1 = {a, not b, not c}, I2 = {not a, b, not c},

I3 = {not a, not b, c}, I4 = {a, b, not c}, I5 = {a, not b, c},

I6 = {not a, b, c}, I7 = {a, b, c}

The corresponding Gelfond-Lifschitz transformed programs are:

Pg,AI0

stable = {({a, b}, ∅), ({c}, {a})} Pg,AI1

stable = {({a, b}, ∅), ({c}, {a})}

Pg,AI2

stable = {({a, b}, ∅)} Pg,AI3

stable = {({c}, {a})}

Pg,AI4

stable = {({a, b}, ∅)} Pg,AI5

stable = {({c}, {a})}

Pg,AI6

stable = ∅ Pg,AI7

stable = ∅

Consider e.g. I2 = {b}: By application of the Gelfond-Lifschitz transform
we get ({a, b}, ∅) from ({a, b}, {not c}), since for the negation-as-failure literal
not c in the body c 6∈ I2 holds, and it is therefore deleted from the body.
({c}, {a, not b}) is deleted as a whole since b ∈ I2. �

Stable models are those interpretations whose positive part is one of the
minimal models of the corresponding Gelfond-Lifschitz-transformed program.

Definition 2.6.17 (Stable Models [Prz91, GL88])
Given a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈
ΠDatalognot,∨,w , SM(P) denotes the set of all stable models of P (and P’),
defined as:

SM(P) = {I+ | I ∈ (HB(P) ∪HBnot(P)), I+ ∩ atoms(I−) = ∅,

I+ ∪ atoms(I−) = HB(P), I+ ∈MM(PI)}

�

We now examine which of the interpretations of Example 2.6.3 are Stable
Models:

34

Example 2.6.4 (Example 2.6.3 ctd.)

MM(Pg,AI0

stable) ={{b}, {a, c}}, MM(Pg,AI1

stable) = {{b}, {a, c}}, cf. Example 2.6.2

MM(Pg,AI2

stable) = {{a}, {b}}, MM(Pg,AI3

stable) = {∅},

MM(Pg,AI4

stable) = {{a}, {b}}, MM(Pg,AI5

stable) = {∅},

MM(Pg,AI6

stable) = {∅}, MM(Pg,AI7

stable) = {∅}

I+
0 = ∅ 6∈MM(Pg,AI0

stable) I+
1 = {a} 6∈MM(Pg,AI1

stable)

I+
2 = {b} ∈MM(Pg,AI2

stable) I+
3 = {c} 6∈MM(Pg,AI3

stable)

I+
4 = {a, b} 6∈MM(Pg,AI4

stable) I+
5 = {a, c} 6∈MM(Pg,AI5

stable)

I+
6 = {b, c} 6∈MM(Pg,AI6

stable) I+
7 = {a, b, c} 6∈MM(Pg,AI7

stable)

Therefore SM(Pg,A
stable) = {{b}}, since I2 is the only interpretation which satis-

fies the criterion in Definition 2.6.17.
�

We conclude this section with a larger toy problem:

Example 2.6.5
This example is a formulation of riddle number 167 in Raymond Smullyan’s
book [Smu78].

The problem is the following: Hypothetical Transsylvania is populated by
Transsylvanians, who are either humans or vampires (rule 2.7), and who are
either sane or insane beings (rule 2.8). Humans always tell the truth, whereas
vampires are malicious and therefore cannot help lying all the time. Sane crea-
tures have a correct picture of the world, whereas insane ones perceive the world
inversely, i.e., things that are true in the real world are perceived as wrong by
them and vice versa.

Therefore there are four types of people in Transsylvania: Sane humans,
who tell true things about the world (rule 2.9); insane humans, who perceive
everything in the wrong way, and therefore do not tell the truth about the
world; sane vampires, whose beliefs about the world are correct, but must lie
about it and hence do not tell the truth; finally, insane vampires lie about wrong
percepts and therefore tell true things about the world (rule 2.10).

Now a particular Transsylvanian, call him fred (fact 2.5), says “I am human
or I am sane.” (fact 2.6). What type of inhabitant is he?

If some Transsylvanian, who makes such a statement, tells the truth, (s)he
is either human or sane (rule 2.11). Conversely, if a lying Transsylvanian makes
that statement, (s)he must be a vampire and insane (rules 2.12 and 2.13).

35

Let Pvampire be the following program:

tr(fred). (2.6)

statement(fred). (2.7)

h(T) ∨ v(T)← tr(T). (2.8)

i(T) ∨ s(T)← tr(T). (2.9)

tt(T)← h(T), s(T). (2.10)

tt(T)← v(T), i(T). (2.11)

h(T) ∨ s(T)← tt(T), statement(T). (2.12)

v(T)← not tt(T), statement(T). (2.13)

i(T)← not tt(T), statement(T). (2.14)

The grounded abstract program is shown next (the grounding step is easy
in this case, since there is only one constant, fred).

Pg,A
vampire = grounding(abstract(Pvampire))

Pg,A
vampire ={({tr(fred)}, ∅), (2.5’)

({statement(fred)}, ∅), (2.6’)

({h(fred), v(fred)}, {tr(fred)}), (2.7’)

({i(fred), s(fred)}, {tr(fred)}), (2.8’)

({tt(fred)}, {h(fred), s(fred)}), (2.9’)

({tt(fred)}, {v(fred), i(fred)}), (2.10’)

({h(fred), s(fred)}, {tt(fred), statement(fred)}), (2.11’)

({v(fred)}, {not tt(fred), statement(fred)}), (2.12’)

({i(fred)}, {not tt(fred), statement(fred)})} (2.13’)

Now let us consider possible interpretations, and check whether they are
stable models. To answer the question of what type of inhabitant fred is, it is
sufficient to examine whether {h(fred), s(fred)}, {h(fred), i(fred)}, {v(fred),
s(fred)}, or {v(fred), i(fred)} is in a stable model for the answer to be “He is
a sane human.”, “He is an insane human.”, “He is a sane vampire.”, or “He is
an insane vampire.”, respectively.

First, let us consider whether a model is possible which contains {h(fred),
s(fred)}. Obviously, the model must contain tr(fred) and statement(fred)
in order to satisfy (2.5’) and (2.6’). By this inclusion, (2.7’) and (2.8’) are
satisfied as well. By (2.9’), the model must must also include tt(fred), thus also
satisfying (2.11’), while (2.10’) is satisfied as well at this point, since the body
is not true.

So now let us check whether {h(fred), s(fred), tr(fred), statement(fred),
tt(fred)} is a stable model: The Gelfond-Lifschitz-transformed program is es-
sentially the same program without the last two rules (2.12’, 2.13’). {h(fred),
s(fred), tr(fred), statement(fred), tt(fred)} is indeed a minimal model of
this program. Thus one possible answer to our question is that fred is a sane
human.

What about the other cases? Informally, for possible models containing
{h(fred), i(fred)} or {v(fred), s(fred)}, tt(fred) cannot be derived directly.

36

But if tt(fred) is not included in the candidate model, the last two rules are
not discarded during the Gelfond-Lifschitz-transform as in the previous case.
Rather not tt(fred) is eliminated from them, which means that a model for
the Gelfond-Lifschitz-transformed program contains also v(fred) and i(fred)
and therefore it also must contain tt(fred) by (2.10’). So the minimal model of
the Gelfond-Lifschitz-transformed program is not equal to the original candidate
model and thus no stable model. On the other hand, if tt(fred) was contained in
the candidate model, the last two rules would be thrown away, but then tt(fred)
is not in a minimal model of the transformed program, since the premises of
neither (2.9’) nor (2.10’) hold.

The last case is a model which contains {v(fred), i(fred)}. By (2.10’), this
model must contain tt(fred). But then the Gelfond-Lifschitz-transform discards
the last two rules, and a minimal model must contain h(fred) and s(fred) in
order to satisfy (2.11’). As we have seen above, the model containing h(fred)
and s(fred) but not v(fred) and i(fred) is already minimal, so the minimal
model has to be different from the candidate model, which entails that no model
containing v(fred) and i(fred) can be stable.

In total, we can conclude that fred must be a sane human. �

2.6.5 Other Semantics

Most semantics for Datalognot,∨ (or disjunctive logic programming in general)
different from the Minimal Model Semantics and the Stable Model Semantics
are partial semantics. The most important one of these is the Well-founded
Semantics, generalised to the disjunctive case [Ros90]. Also the more recently
introduced static semantics [Prz95] has been talked about much. [Dix95] gives
a comprehensive survey of various semantics for several kinds of logic programs
including function symbols, thus also subsuming our function-free Datalog

languages.

2.6.6 Answer Sets – Semantics for Extended Programs

So far we have only considered programs without explicitly negated literals.
In [GL91], Michael Gelfond and Vladimir Lifschitz have defined the notion of
answer sets, which is the rough counterpart of a model in the scope of programs
including explicit literals.

The general difference between a stable model and an answer set (as defined
in [GL91]) is that an answer set consists of explicitly negated ground atoms
rather than just of atoms and that an answer set in which both A and ¬ A,
A ∈ Atoms occur is defined to be the set of all literals (Literals). Otherwise
answer sets are defined identically to stable models. Consequently, this approach
has later been generalised to other semantics than the Stable Model Semantics.

Answer sets containing some pair A and ¬ A, A ∈ Atoms are called incon-
sistent answer sets, all others are referred to as consistent answer sets. The
definition of answer sets implies that inconsistent answer sets are always the set
of all literals.

Instead of defining answer sets as a separate concept, we give a translation
from extended programs to non-extended programs, such that there is a one-to-
one correspondence between the consistent answer sets of the extended program
and the stable models of the translated program.

37

This transformation is built on the fact that we can use a new predicate p∗

instead of ¬p. Of course one has to make sure that no ground atoms p(c1, . . . , cn)
and p∗(c1, . . . , cn) occur tpgether in one model representing an answer set. But
first, let us define the substitution of p∗ for ¬p formally:

Definition 2.6.18 (Predicates for Explicitly Negated Predicates)
For each explicitly negated literal ¬ p(t1, . . . , tn) in a program P we define an
atom with a unique predicate p∗, which does not occur in P and is also unique
for each predicate in P. (Such a new predicate p∗ exists since the number
of predicates in a program is finite, whereas the total number of predicates is
infinite.)

posPeL : Literals¬ → Atoms

posPeL(L) =

{

L if L ∈ Atoms

p∗(t1, . . . , tn) if L = ¬ p(t1, . . . , tn)

We extend this to general literals:

posPL : Literals→ Literalsnot

posPL (L) =

{

poseL(L) if L ∈ Literals¬

not poseL(M) if L = not M

Applying these operations to abstract rules and constraints yields posP :

posPa : Rulesabstract ∪ Constraintsabstract → Rulesabstract ∪ Constraintsabstract

posPa ((H,B)) = ({poseL(L) | L ∈ H}, {posL(L) | L ∈ B)

posPa ((C, l, w)) = ({posL(L) | L ∈ C}, l, w)

Finally, for each P ∈ Datalog¬,not,∨,w, we define a P∗

P∗ = {posPa (r) | r ∈ abstract(P)}

�

P∗ captures the meaning of consistent answer sets. But what should we
do about inconsistent answer sets? Clinging to the original definition does
not make sense in our framework, since the set of all literals is infinite and
it contains symbols which do not occur in the program. Also brave reasoning
(considering a literal to be entailed by the program if it occurs in at least one
model of the program) would not make any sense. Also we think that an answer
set is inconsistent is no proper meaning of a program, so we do not consider
inconsistent answer sets.

In our approach, a program, which has an inconsistent answer set is seman-
tically equivalent to a program which does not have any answer sets at all. To
this end we define constraints which disallow any atom and its corresponding
explicitly negated literal to occur in the same model of P∗.

38

Definition 2.6.19 (Answer Set Constraints)

PConsistency = { (∅, {p(X 1, . . . , X n), p∗(X 1, . . . , X n)}) |

p∗ ∈ predicates(P∗), arity(p) = n}

�

So finally, we define the transformed program P+ ∈ Programsabstract for a
program P ∈ Datalog¬,not,∨,w whose stable models correspond to the consis-
tent answer sets of P.

Definition 2.6.20 (Answer Set Transformation)

P+ = P∗ ∪ PConsistency

�

2.6.7 Parametrised Semantics for Programs with Weak
Constraints

We now define the semantics for weak constraints. We do not require any par-
ticular semantics for the part of the program without weak constraints. Given
a total or partial semantics SEM(P) (cf. Definition 2.6.13, Definition 2.6.14) of
some program, we call the models M ∈ SEM(P) candidate models of P. These
models satisfy all the mandatory facts, rules, and strong constraints, according
to some semantics. The task is then to choose those models which satisfy as
many weak constraints as possible, taking into account the layer and weight
informations associated with each of the weak constraints.

Maximising the number of satisfied constraints (w.r.t. the layer and weight
information) among the candidate models is equivalent to minimising the num-
ber of violated constraints among the candidate models (again taking into ac-
count the layer and weight information). This is the approach we will follow in
order to tackle this problem.

The meaning of layers should be as follows: Weak Constraints in a higher
layer are more important than all Weak Constraint of lower layers together.

By “more important” we mean that if we have the choice between a model
which violates some constraints of lower layers and one which violates some
constraints of a higher layer, the former alternative should be chosen. In par-
ticular, a candidate model M1 should be better than another candidate model
M2 if in M1 all constraint of layers n and above are satisfied and all lower layer
constraints are violated (Figure 2.1(b)) and in M2 all constraints of a lower layer
than n are satisfied and one constraint is violated in layer n (Figure 2.1(a)).

Given a set of candidate models, we first choose those models for which the
highest layer in which weak constraints are violated is as low as possible.

Among the remaining models those are chosen which minimise the sum of
weights of violated weak constraints in the highest layer in which weak con-
straints are violated. Among these models we choose those which minimise the
sum of weights of violated weak constraints in the highest layer in which the

39

violated weak constraint satisfied weak constraint

���
���
���
���

���
���
���
���

���
���
���
���

0

n-1

n

n+1

(a) Model which violates one weak con-
straint in layer n

violated weak constraint satisfied weak constraint

���
���
	�	
	�	

�

�

���
���

���
���

�

�

0

n-1

n

n+1

(b) Model which violates all weak con-
straints in layers below n

Figure 2.1: Extreme Case of Weak Constraint Violations

sums of weights of violated constraints differ. This hierarchical choice process
is continued until all layers have been considered.

Thus, for the remaining models, call them preferred models, the following
holds:

1. The highest layer in which weak constraints are violated is equal and
minimal for all of these models.

2. The layers in which weak constraints are violated are the same for all of
these models.

3. The sum of weights of violated weak constraints in each layer in which
weak constraints are violated is minimal among the models for which the
sum of weights of violated weak constraints is minimal in all layers above
the considered one and thus equal for all of these models.

We will define the preferred models of a program formally below, since we
need some preliminary definitions for it.

First we need a formal method to determine all abstract constraints (≡ weak
constraints) of some abstract program of some layer (clayerP), we also need to
determine the layers occurring in a program (Layers(P)), and the greatest layer
(lPmax) in a program.

Definition 2.6.21 (Layers)
Given a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈

40

ΠDatalognot,∨,w , we define the following:

clayerP : N→ P(Constraintsabstract)

clayerP(l) = {(C, l, w) | (C, l, w) ∈ P}

Layers : Programsabstract → P(N)

Layers(P) = {l | (C, l, w) ∈ P}

lPmax = max
l∈Layers(P)

l

�

We also need to determine which weak constraints are violated by a given
candidate model.

Definition 2.6.22 (Violated Abstract (Weak) Constraints in a particular layer)
Given a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈
ΠDatalognot,∨,w , and a candidate model M ∈ SEM(P), the set of violated con-
straints of layer l is defined as

NM,P
l = {C |M 6|= C,C ∈ clayerP(l)}

�

We also define the largest (wP
max) and smallest (wP

min) weight in a program
(we will need that later), and the weight associated to an abstract constraint:

Definition 2.6.23 (Weights)
Given a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈
ΠDatalognot,∨,w , let

wP
max = max

(C,l,w)∈P
w

wP
min = min

(C,l,w)∈P
w

For each W = (C1, l1, w1) we define wW = w1. �

Intuitively, the preferred models for a program should be those models which
are preferred for all layers in this program. As we will see, the set preferred
models of a layer are defined recursively and the set of preferred models for
each layer monotonically decreases, starting with the set of all candidate models,
which is a superset of the set of preferred models of the highest layer, down to
the set of all preferred models of the lowest layer.

Therefore, the set of preferred models of the lowest layer is a subset of the
set of preferred models for an arbitrary layer. It follows that the set of preferred
models of the lowest layer coincides with the set of preferred models for the
whole program.

Definition 2.6.24 (Formal Definition of Preferred Models)
A candidate model of a grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ ΠDatalognot,∨,w , M ∈ SEM(P), is a preferred model, iff the sum of weights

41

of weak constraints which are violated by M is minimal for the highest layer
among all candidate models, and for all lower layers the summarized weights of
weak constraints violated by M is minimal among those models for which this
criterion holds for all higher layers.

As motivated above, we define the models which are preferred in an arbitrary
layer. This is a bounded recursive definition, where the base case is the highest
layer in the program. The recursion is defined over the layers in decreasing
order.

The criterion for preferred models in any layer is the minimisation of the
summarized weights of the weak constraints which are violated by the respective
model out of the set from which the preferred models of the layer are determined.

For the base case of the highest layer this latter set of models coincides with
the set of all candidate models. For any other layer this set is the set of preferred
models determined in the layer immediately above the considered layer.

We formulate the base case:

PREFSEM (P, lPmax) = {M ∈ SEM(P) |
∑

W∈N
M,P

lPmax

wW = min
Mc∈SEM(P)

∑

W∈N
Mc,P

lPmax

wW}

The (bounded) recursive step is as follows:

∀i ∈ Layers(P)− {lPmax} : PREFSEM (P, i) =

{M ∈ PREFSEM (P, i + 1) |
∑

W∈N
M,P
i

wW = min
Mc∈PREFSEM (P,i+1)

∑

W∈N
Mc,P

i

wW}

Having defined the set of preferred models for each layer, we now generalize
this notion to the set of preferred models for the entire program P, as indicated
above:

PREFSEM (P) = PREFSEM (P, 1)

�

42

Chapter 3

Representing Knowledge in
Datalog¬,not,∨,w

In this chapter we will give several examples of domains, in which problems
occur which can elegantly be represented using Datalog¬,not,∨,w. We picked
these problems such that the benefit of having weak constraints with layer and
weight information becomes evident. Keep in mind that any problem up to
a certain complexity bound (at least up to ΣP

2 problems, since Datalognot,∨

captures this class [EGM97]) can be represented with Datalog¬,not,∨,w.
The choice of the problems in this chapter should also reflect the practical

relevance of the Datalog¬,not,∨,w language. We will proceed by starting at
the very wide field of abductive reasoning problems Section 3.1, giving trans-
lations for several classes of such reasoning problems – then we will move on
to the more restricted domain of school timetabling problems, where we will
describe the encoding of one rather general kind of problem and also of a par-
ticular refinement of it, which has been published recently. Finally we will pick
three closely interrelated problems of graph theory and present different ways of
encoding them.

3.1 Abduction

Abduction is an important way of reasoning, for example it is the methodology
behind diagnostic reasoning. Given a set of rules or theories and some obser-
vations, abductive reasoning tries to find out the reasons for the observations,
given that the rules are correct. These reasons are also called explanations.

Its counterparts, induction and deduction can also be formulated using this
terminology: induction means that given a set of reasons and a set of obser-
vations, the rules should be found; deduction means that reasons and rules are
given, and the observations (or consequences) should be determined.

As induction and deduction, abduction has been recognised as a basic prin-
ciple of common-sense reasoning, and many tasks of everyday life are tackled
and solved by using this approach. The philosopher Charles Sanders Peirce has
to be given credit for identifying this way of reasoning.

Abductive Logic Programming is one of the possible formulations of ab-
duction. In this case, the theory is represented by a logic program, and the

43

observations are represented by ground literals. The task is then to find a set
of explanations, which are represented by atoms, so that the explanations, the
logic program, and the observations are consistent. In practice, it is feasible that
the possible explanations are restricted to a given set of possible explanations,
called hypotheses. (cf. [KKT93, EGL97, EG95])

Formally, we define an abductive logic programming problem (LPAP) as a
triple of hypotheses, observations and the underlying theory, similar to [EGL97,
EG95]:

Definition 3.1.1 (LPAPs)

Lpap = {〈Hyp,Obs, LP 〉 | Hyp ⊆ Atoms, Obs ⊆ Literalsnot, LP ∈ ΠDatalognot,∨ ,

variablesA(Hyp) ∪ variablesA(atomsL(Obs)) = ∅}

�

The task is to find a suitable explanation, defined as follows:

Definition 3.1.2 (Explanation)
Given an LPAP 〈Hyp,Obs, LP 〉 ∈ Lpap, for an explanation E the following
must hold:

E ⊆ Hyp

∃M ∈ SM(LP ∪ E) : Obs ⊆M

�

So an explanation must be a subset of the hypotheses (as motivated above),
and additionally all observations must be true in one of the stable models of the
explanation together with the theory.

So an LPAP may have no, one, or many explanations because there may be
no, one, or many stable models. Usually one wants to find a minimal expla-
nation. There are multiple minimality criteria which all make sense. We will
consider Minimum Cardinality, Prioritisation, and Penalisation [EG95].

3.1.1 Minimum Cardinality Abduction

This approach tries to minimise the number of hypotheses in the explanation,
thereby preferring simpler explanations. It should be noted that all hypotheses
can be in an explanation with uniform probability.

Definition 3.1.3 (Minimum Cardinality)
Given an LPAP 〈Hyp,Obs, LP 〉, an explanation E ⊆ Hyp satisfies the minimum
cardinality criterion, iff no other explanation E ′ ⊆ Hyp exists, such that |E′| <
|E|, where |X| denotes the cardinality of set X. �

We can encode an LPAP P by a Datalog¬,not,∨,w program Pminc, such
that each explanation satisfying the minimum cardinality criterion is also an
answer set of Pminc.

44

Definition 3.1.4 (Encoding of Minimum Cardinality LPAPs)
Given an LPAP P = 〈Hyp,Obs, LP 〉, we define Pminc as:

Pminc = LP ∪ {h ∨ ¬ h. | h ∈ Hyp} (3.1)

∪ {← a. | not a ∈ Obs} (3.2)

∪ {← not a. | a ∈ Obs ∩ Atoms} (3.3)

∪ {⇐ h. | h ∈ Hyp} (3.4)

�

The first extension (3.1) to LP “generates” models for all subsets of Hyp.
The strong constraints (3.2) and (3.3) are used to enforce that the observations
are in the model. In the case of a negative observation (3.2), which means that
there is no information about this observation, we do not want this observa-
tion to be entailed by LP and a possible explanation and vice versa. Finally,
the weak constraints (3.4), which are all in the same layer and are weighted
uniformly, state that an answer set is better than another one, if less atoms
of the hypotheses are in it, since one such constraint is violated if the corre-
sponding atom is in the model. It follows that the preferred answer sets contain
the least number of hypotheses among all candidate answer sets and therefore
the preferred answer sets correspond exactly to those explanations which have
minimum cardinality.

Example 3.1.1
Consider a computer network in a larger company. Usually, such networks are
comprised of several subnetworks, connected by suitable gateways or routers,
and also bridges and repeaters on a lower level. We will refer to all of these
devices as connectors, since they all connect several subnets in some way.

If such connectors fail, the company’s network may be partitioned, which is
an undesirable and critical situation and should be remedied as soon as possible.

To this end we might want to design an intelligent agent, which aids the
technicians in finding and fixing the error. The task posed to this agent is an
abductive problem: The observations are the facts that some subnets are un-
reachable from some others, the hypotheses are that some subset of the connec-
tors failed. The theory is some formalisation of the topology of the company’s
network, possibly enhanced by additional knowledge (for instance which of the
devices are connected to the same power circuit etc.).

Consider the network topology depicted in Figure 3.1 on the following page.
The network consists of three Ethernet subnets (eth1, eth2, eth3), two token
ring subnets (tr1, tr2), and several connectors (c1, c2, c3, c4). Note that in
general these graphs are bipartite (no direct connections between subnets or
between connectors exist). We therefore represent the topology using a relation
connected(S,C), which contains a tuple if subnet S is connected to connector
C.

The representation of our example network is shown in Figure 3.2 on the fol-
lowing page. The theory behind the network is that one subnet is directly reach-
able (represented by subconnect/2) from another one, if both subnets are con-
nected to the same connector, and this connector is not broken. We generalise
from direct reachability to general reachability (represented by subreachable/2)
by standard transitive closure. The resulting theory (including predicates which

45

eth1

c1c2

tr1
eth2

eth3

c3

c4

tr2

Figure 3.1: Example Network Topology

connected(eth1, c1). connected(eth1, c2).

connected(eth2, c1). connected(eth2, c2).

connected(eth2, c3). connected(eth3, c1).

connected(eth3, c3). connected(tr1, c2).

connected(tr1, c4). connected(tr2, c3).

connected(tr2, c4).

Figure 3.2: Representation of the network shown in Figure 3.1

allow us to identify subnets and connectors, respectively) is depicted in Fig-
ure 3.3. Let us call all facts and rules of Figure 3.2 and Figure 3.3 LPnet.

Now the hypotheses our agent has is that some of the connectors are broken
for some reason. We will refer to this as Hypnet = {broken(c1), broken(c2),
broken(c3), broken(c4)}.

Note that this theory is very simplified: For instance, it does not capture
the possibility that a subnet is broken in case of failures – but extending the
theory to capture additional sources of failure is straightforward.

Now assume a situation in which we observe that subnet tr2 cannot be
reached from eth1. So let Obsnet = {not subreachable(eth1, tr2)}.

subconnect(S1, S2)← connected(S1, C), connected(S2, C), not broken(C).

subreachable(S1, S2)← subconnect(S1, S2).

subreachable(S1, S2)← subreachable(S1, S3), subconnect(S3, S2).

subnet(S)← connected(S,C).

connector(C)← connected(S,C).

Figure 3.3: Theory for network diagnosis problems

46

Pminc
net = LPnet ∪ {broken(c1) ∨ ¬broken(c1).,

broken(c2) ∨ ¬broken(c2).,

broken(c3) ∨ ¬broken(c3).,

broken(c4) ∨ ¬broken(c4).,

← subreachable(eth1, tr2).,

⇐ broken(c1).,

⇐ broken(c2).,

⇐ broken(c3).,

⇐ broken(c4).}

Figure 3.4: The Datalog¬,not,∨,w program which solves the minimum cardi-
nality abduction problem 〈Hypnet, Obsnet, LPnet〉

In order to give possible explanations to this malfunction, the agent has to
solve the LPAP 〈Hypnet, Obsnet, LPnet〉.

If we have no additional knowledge about the stability of the connectors,
we may assume that the probability of their failure is uniformly distributed,
and thus resort to minimal cardinality abduction. Using the translation defined
in Definition 3.1.4, the solution of this problem can be found by determining
the preferred models of the Datalog¬,not,∨,w program Pminc

net depicted in Fig-
ure 3.4.

It can be verified that the preferred answer sets of Pminc
net are {broken(c1),

broken(c2), ¬ broken(c3), ¬ broken(c4)}, {¬ broken(c1), broken(c2), broken(c3),
¬ broken(c4)}, {¬ broken(c1), ¬ broken(c2), broken(c3), broken(c4)}. There
are other consistent answer sets which are not preferred, since they violate more
weak constraints. For example, all connectors could be broken. While not im-
possible, it is a worst case scenario and a technician should first try to make
additional observations before concluding this. �

3.1.2 Priority Minimal Abduction

The minimum cardinality approach can be refined by partitioning the hypothe-
ses in groups of different priorities. An explanation is better than another using
this notion, if it contains less hypotheses from the lowest priority set and among
the explanations for which this number is minimal, an explanation is better than
another if it contains less hypotheses of the second lowest priority set, and so on.
So it is less likely that a hypothesis from a lower priority set is in an explanation
than one from a higher priority set [EG95].

In order to encode such problems, we simply add the priority layer infor-
mation to the weak constraints, otherwise leaving Definition 3.1.4 untouched.
Note that in our framework higher priorities are more important, whereas in
the context of Priority Minimal Abduction lower priorities are more important.
To be able to deal with this, we reverse the order of priorities: If we have n
priority sets, priority i becomes n− i + 1 in the reversed ordering.

47

Ppmin
net = LPnet ∪ {broken(c1) ∨ ¬broken(c1).,

broken(c2) ∨ ¬broken(c2).,

broken(c3) ∨ ¬broken(c3).,

broken(c4) ∨ ¬broken(c4).,

← subreachable(eth1, tr2).,

⇐ broken(c1).[1 :],

⇐ broken(c2).[2 :],

⇐ broken(c3).[2 :],

⇐ broken(c4).[1 :]}

Figure 3.5: The Datalog¬,not,∨,w program which solves the priority min-
imal abduction problem 〈Hypnet, Obsnet, LPnet〉 under prioritisation H1 =
{broken(c2), broken(c3)}, H2 = {broken(c1), broken(c4)}

Definition 3.1.5 (Encoding of Priority Minimality LPAPs)
Given an LPAP P = 〈Hyp,Obs, LP 〉 and a prioritisation H1, . . . , Hn of H (a
partition of H), we define Ppmin as:

Ppmin = LP ∪ {h ∨ ¬ h. | h ∈ Hyp}

∪ {← a. | not a ∈ Obs}

∪ {← not a. | a ∈ Obs ∩ Atoms}

∪ {⇐ h.[n− i + 1 :] | h ∈ Hi}

�

Example 3.1.2
We extend Example 3.1.1. For instance, assume that connectors c2 and c3 have
an independent auxiliary power supply which also does power regulation, while
c1 and c4 do not have this feature.

In this light it is much less likely that c2 or c3 fails. We might express this ad-
ditional information by giving the prioritisation H1 = {broken(c2), broken(c3)},
H2 = {broken(c1), broken(c4)} for Hypnet.

The LPAP 〈Hypnet, Obsnet, LPnet〉 using priority minimal abduction with
H1, H2 can be translated into a Datalog¬,not,∨,w program, as described in
Definition 3.1.5. The resulting program Ppmin

net is depicted in Figure 3.5.
The preferred answer sets of Ppmin

net and thus explanations are {broken(c1),
broken(c2), ¬ broken(c3), ¬ broken(c4)} and {¬ broken(c1), ¬ broken(c2),
broken(c3), broken(c4)}. Note that {¬ broken(c1), broken(c2), broken(c3),
¬ broken(c4)}, which was an explanation under minimum cardinality abduction,
is not an explanation here. Indeed, it is less likely that both connectors with
auxiliary power supply and stabilisation system fail, than just one of them. �

3.1.3 Penalisation-based Abduction

Finally, penalisation is yet another refinement defined by assigning a penalty to
each hypothesis. The preferred explanation is then the one which minimises the
added penalties.

48

Ppenmin
net = LPnet ∪ {broken(c1) ∨ ¬broken(c1).,

broken(c2) ∨ ¬broken(c2).,

broken(c3) ∨ ¬broken(c3).,

broken(c4) ∨ ¬broken(c4).,

← subreachable(eth1, tr2).,

⇐ broken(c1).[: 50000],

⇐ broken(c2).[: 20000],

⇐ broken(c3).[: 2000],

⇐ broken(c4).[: 200]}

Figure 3.6: The Datalog¬,not,∨,w program which solves the penalisation-based
abduction problem 〈Hypnet, Obsnet, LPnet〉 under the penalties defined in the
text

This is straightforward using our weight mechanism. We simply reuse Defi-
nition 3.1.4, and add the penalties to the weak constraints.

Definition 3.1.6 (Encoding of Penalisation Minimality LPAPs)
Given an LPAP P = 〈Hyp,Obs, LP 〉 and for each h ∈ Hyp a penalty wh, we
define Ppenmin as:

Ppenmin = LP ∪ {h ∨ ¬ h. | h ∈ Hyp}

∪ {← a. | not a ∈ Obs}

∪ {← not a. | a ∈ Obs ∩ Atoms}

∪ {⇐ h.[: wh] | h ∈ Hyp}

�

Example 3.1.3
Consider again Example 3.1.1 and let us forget what we know about the auxiliary
power systems, but focus on the types of connectors. Usually manufacturers
of hardware associate a number called mean time to failure (MTTF) to their
products. This is a probabilistic expectancy value of how long the piece of
hardware will stay operational. We can use this to assign a penalisation to the
connectors: The MTTF minus the time the respective connector has been used
is a measure of probability for the connector to fail. The lower this value, the
higher the probability of failure.

In our example, assume that c1 is brand new and our measure is wbroken(c1) =
500001, c2 and c4 are the same type and are in use for the same time, and
wbroken(c2) = wbroken(c4) = 20000, and c3 is rather old, soon reaching the
MTTF, wbroken(c3) = 200.

With this new information, the LPAP 〈Hypnet, Obsnet, LPnet〉 can be trans-
lated to the Datalog¬,not,∨,w program Ppenmin

net in Figure 3.6 by the transfor-
mation presented in Definition 3.1.6.

1MTTF is usually given in hours

49

Pcomb
net = LPnet ∪ {broken(c1) ∨ ¬broken(c1).,

broken(c2) ∨ ¬broken(c2).,

broken(c3) ∨ ¬broken(c3).,

broken(c4) ∨ ¬broken(c4).,

← subreachable(eth1, tr2).,

⇐ broken(c1).[1 : 50000],

⇐ broken(c2).[2 : 20000],

⇐ broken(c3).[2 : 20000],

⇐ broken(c4).[1 : 200]}

Figure 3.7: The Datalog¬,not,∨,w program which solves the penalisation-based
abduction problem 〈Hypnet, Obsnet, LPnet〉 under the penalties defined in the
text

The preferred answer sets of Ppenmin
net are {¬ broken(c1), broken(c2), broken(c3),

¬ broken(c4)} and {¬ broken(c1), ¬ broken(c2), broken(c3), broken(c4)}.
{broken(c1), broken(c2), ¬ broken(c3), ¬ broken(c4)} is not preferred, and
indeed the probability of failure is lower. �

Note that in our approach the combination of prioritisation and penalisation
is also possible and straightforward, as suggested in [EG95].

Example 3.1.4
Consider again Example 3.1.1 and combine the knowledge introduced in 3.1.2
and 3.1.3.

The corresponding Datalog¬,not,∨,w program is shown in Figure 3.7.
The only preferred answer set of Pcomb

net is {¬ broken(c1), ¬ broken(c2),
broken(c3), broken(c4)}, which matches intuition. �

3.2 Planning

3.2.1 Automated Timetabling

From the large field of Planning, we pick out a particular subfield, which is
Automated Timetabling. We will consider timetabling in schools, but this type
of problem naturally occurs in many other situations, too.

Automated Timetabling has evolved as a separate, highly specialised field of
research. There are special conferences on this topic [BR96], and one can observe
a considerable increase of research papers on this topic [Bar96]. [Sch95] gives
a comprehensive survey of the developments in this area. Most publications
consider school or university timetabling problems.

There are several related instances of school timetabling problems, which
somehow vary in complexity, but most of the relevant problems are NP-complete
[CK96, Sch95].

50

3.2.2 School Timetabling

TTP1: The Basic Problem

Given a set of m classes C = {c1, . . . , cm}, a set of n teachers T = {t1, . . . , tn}, a
set of p periods P = {p1, . . . , pp}, and a set of requirements R = {(cc, tt, rc,t) | cc ∈
C, tt ∈ T}, which contains triples which state that teacher tt has to give rc,t

lectures to class cc, the problem is to assign lectures to periods in such a way
that no teacher and no class is involved in more than one lecture during the
same period, and that all of the teaching requirements are met.

More formally: Find a set A ⊆ {(cc, tt, pp) | cc ∈ C, tt ∈ T, pp ∈ P}, such
that:

∀(ci, tj , ri,j) ∈ R :
∑

px∈P

χA((ci, tj , px)) = ri,j (3.5)

∀c ∈ C, p ∈ P : (c, tx, p) ∈ A ∧ (c, ty, p) ∈ A =⇒ x = y (3.6)

∀tt ∈ T, pp ∈ P : (cx, t, p) ∈ A ∧ (cy, t, p) ∈ A =⇒ x = y (3.7)

where χM is the characteristic function for M , defined in the usual way as

χM : M → {0, 1}, χM (x) =

{

1 if x ∈M

0 if x 6∈M

Let us call this problem TTP1, as in [Sch95].
It should be noted that this problem is solvable in polynomial time [Sch95].

Formulation of TTP1 in Datalognot,∨,w

The only feature which does not have a straightforward representation is the
number of lectures given by some teacher to some class, in particular the con-
straints described by 3.5. There is no means to express something like “count
the number of atoms looking like . . . ” in Datalognot,∨,w, so we have to work
around this.

We assign numbers to the lectures of a particular teacher given to a class.
In other words, we assume that in our database facts r(ci, tj , k) are stored, if
0 < k ≤ ri,j holds. In other words, r(c, t, k) is in the database, if teacher t has
to teach at least k periods to class c. Further we store the periods as p(p), if
p ∈ P .

The task is now to find a suitable assignment. We simply state that a teacher
teaches a class the kth lecture at a given period or (s)he does not.

a(C, T, P,K) ∨ na(C, T, P,K)← p(P), r(C, T,K). (3.8)

Rule 3.8 obviously guesses all subsets of possible assignments. We can spot
a potential problem here: The fourth argument of a is induced by our represen-
tation and doesn’t mean anything in the original problem, but we need it for
discriminating between the different lectures. We will deal with this below.

51

It is clear that each lecture should be given only once, so there may not be
two assignments which are identical up to the period.

← a(C, T, P1,K), a(C, T, P,K), P 6= P1. (3.9)

Note that we may consider 6= a built-in predicate, which discards every
ground instances where its arguments are equal during the grounding process
and does not appear any longer in resulting ground abstract rules.

We must ensure that each lecture is in the timetable – there may be no
requirement without the corresponding lecture being assigned:

planned(C, T,K)← a(C, T, P,K). (3.10)

← r(C, T,K), not planned(C, T,K). (3.11)

Also lectures with different numbers must not be given during the same
period:

← a(C, T, P,K), a(C, T, P,K1),K 6= K1. (3.12)

There is still a problem: Due to the representation involving the number
of the lecture there are many solutions in which just this lecture number is
permuted.

We can identify classes of models with respect to this permutation and desig-
nate one model which represents the class. To this end we need an ordering over
the class numbers and periods. In this way we can enforce that the first lecture
of teacher t given to class c is not given after the second lecture of teacher t to
class c and so on. Note that “after” in the last sentence implies an ordering of
the periods and “first”, “second”, etc. implies an ordering of the lectures in the
scope of a single teacher and class.

How can we obtain such an ordering? Either we assume that both periods
and numbers of lectures are represented numerically and that there is some
built-in predicate “<”. We could then generate a range-restricted version of
< to periods or lecture numbers: p gt(P1, P2) ← p(P1), p(P2), P1 < P2. and
k gt(K1,K2)← r(C1, T1,K1), r(C2, T2,K2),K1 < K2..

Another way would be to alter the representation of the periods: Instead
of representing them with a simple unary relation, we could represent the suc-
cessor relation over the available periods. We would then store p s(p1, p2),
p s(p2, p3), . . . , p s(pp−1, pp) if we have p periods available. From this, we can
easily deduce an ordering by transitive closure: p gt(P1, P2) ← p s(P1, P2).
and p gt(P1, P3)← p gt(P1, P2), p s(P2, P3)..

For the lecture numbering, we would need an additional predicate repre-
senting the successor relation on this domain, that is k s(1, 2), . . . , k s(rmax −
1, rmax), where rmax indicates the maximum number of lectures to be taught
to one class by a single teacher. The ordering can then be obtained anal-
ogously to the periods: k gt(K1,K2) ← k s(K1,K2). and k gt(K1,K3) ←
k gt(K1,K2), k s(K2,K3)..

In either case we will write A < B instead of p gt(A,B) and k gt(A,B) in
the sequel for better readability. So we add the constraint

52

PTTP1 = { a(C, T, P,K) ∨ na(C, T, P,K)← p(P), r(C, T,K)., (3.8)

← a(C, T, P1,K), a(C, T, P,K), P 6= P1., (3.9)

planned(C, T,K)← a(C, T, P,K)., (3.10)

← r(C, T,K), not planned(C, T,K)., (3.11)

← a(C, T, P,K), a(C, T, P,K1),K 6= K1., (3.12)

← a(C, T, P,K), a(C, T, P1,K1), P < P1,K1 < K., (3.13)

← a(C, T1, P,K1), a(C, T2, P,K2), T1 6= T2., (3.14)

← a(C1, T, P,K1), a(C2, T, P,K2), C1 6= C2.} (3.15)

Figure 3.8: The program for TTP1

← a(C, T, P,K), a(C, T, P1,K1), P < P1,K1 < K. (3.13)

which ensures that a lecture with a greater number is not given at an earlier
period than a lecture with a lower number.

We have now modelled the first Constraints, 3.5. Indeed, the modelling was
not trivial, but still straightforward.

The constraints defined by 3.6 mean that no two teachers should teach the
same class during the same period. Note that the number of the lecture is not
relevant.

← a(C, T1, P,K1), a(C, T2, P,K2), T1 6= T2. (3.14)

Similarly, 3.7 (the same teacher can not give a lecture to two distinct classes
simultaneously) is expressed as:

← a(C1, T, P,K1), a(C2, T, P,K2), C1 6= C2. (3.15)

Let us call the resulting program PTTP1; it is shown in Figure 3.8.

TTP2: Extension to the Basic Problem

Usually, not all teachers are available at all periods, and the same may hold
for classes, too. So, in addition to the constraints in TTP1, we have to ensure
that no lectures are scheduled at periods where either the teacher or the class
is unavailable.

To this end, we define the sets of unavailable periods for each teacher and
each class: ∀c ∈ C : Uc ⊆ P , ∀t ∈ T : Ut ⊆ P .

∀c ∈ C, t ∈ T : p ∈ Uc =⇒ (c, t, p) 6∈ A (3.16)

∀c ∈ C, t ∈ T : p ∈ Ut =⇒ (c, t, p) 6∈ A (3.17)

We call this problem TTP2, as in [Sch95]. Note that with this extension, the
problem becomes NP-complete (cf. [CK96, Sch95]).

53

PTTP1 = { a(C, T, P,K) ∨ na(C, T, P,K)← p(P), r(C, T,K)., (3.8)

← a(C, T, P1,K), a(C, T, P,K), P 6= P1., (3.9)

planned(C, T,K)← a(C, T, P,K)., (3.10)

← r(C, T,K), not planned(C, T,K)., (3.11)

← a(C, T, P,K), a(C, T, P,K1),K 6= K1., (3.12)

← a(C, T, P,K), a(C, T, P1,K1), P < P1,K1 < K., (3.13)

← a(C, T1, P,K1), a(C, T2, P,K2), T1 6= T2., (3.14)

← a(C1, T, P,K1), a(C2, T, P,K2), C1 6= C2., (3.15)

← class unavailability(C,P), a(C, T, P,K)., (3.18)

← teacher unavailability(T, P), a(C, T, P,K).} (3.19)

Figure 3.9: The program for TTP1

Formulation of TTP2 in Datalognot,∨,w

Representing unavailabilities is rather straightforward. We require them to be
contained in two relations, class unavailability/2 and teacher unavailability/2,
defined for each pair of class (or teacher, respectively) and period, in which it
(or (s)he, respectively) is not available.

We then simply extend PTTP1 by the following constraint for class unavail-
ability, stating that it is not allowed to assign a lecture to a class at during a
period, in which it is unavailable, corresponding to 3.16:

← class unavailability(C,P), a(C, T, P,K). (3.18)

In analogy we define one for unavailabilities of teachers, corresponding to
3.17:

← teacher unavailability(T, P), a(C, T, P,K). (3.19)

Let us call the resulting program PTTP2. It is depicted in Figure 3.9.

TTOP2: Optimisation Problem to TTP1 and TTP2

While unavailabilities are usually constraints which have to be met strictly, there
is a number of additional constraints, which are not that strict, but more or less
desirable.

A simple approach would be to assign a desirability factor to each triple
of class, teacher, and period. This is rather general and the representation
in our framework is straightforward by using weights, yet it is not capable
of expressing various desiderata which occur in praxis. One example of such
a desirable property, which cannot be modelled by assigning factors, is that
lectures with the same teacher should be uniformly distributed over the week.
Additionally it is very difficult, if not impossible, to represent different, possibly
conflicting wishes in that way.

54

There are other approaches to specify desired properties of the timetable,
which seem to be more rewarding. One is described in [CDM98] and identifies
several classes of constraints in the school timetabling domain:

• Feasibility Conditions σ

• Didactic Requirements ∆

• Organisational Requirements Ω

• Teacher Preferences Π

1. σ is basically what we have defined as TTP1, with the additional constraint,
that there should not be any “holes” in the generated timetable. This
requires a grouping of periods as weekdays or similar.

2. ∆ describes several desirable criteria, which a timetable should have from
the pedagogical point of view. [CDM98] states the following constraints
they encountered in the school they took as an example:

• no more than x teaching hours a day for each teacher

• a class should not have the same teacher every day during the last
hour

• uniform distribution of the hours with the same teacher over the week

• some lectures should be given in pairs of periods

3. Ω are requirements which are useful from the organisational point of view:

• at least 2 teaching hours per day for each teacher

• as few holes as possible in the teachers’ schedules

• concentrate holes on one day preferably (for parent-teacher meeting
hours)

• do not assign all available teachers in one period (to leave room for
supplements in case of illness)

4. Π are each teacher’s individual preferences, e.g.

• some teachers do not like teaching in the morning

• some want to teach in the morning rather than in the afternoon

• a particular day off

• there is a teacher ranking – preferences of teachers in higher ranks
should be preferred to those of lower-rank teachers

[CDM98] describe the objective function to this problem as

α · I + β1 · s∆ + β2 · sΩ + β3 · sΠ (3.20)

where s∆, sΩ, and sΠ are the weighted sums of violated constraints in the
respective constraint-classes, I is the number of violated constraints in σ, called
“infeasibilities” by [CDM98]. α, β1, β2, β3 are weights, where “α � β1 ≈ β2 ≈

55

β3 induces a hierarchical structure”. In addition they state that ∆ and Ω
constraints should be more important than Π constraints.

In our opinion, this approach goes into the right direction, albeit the repre-
sentation is not optimal. The main point of criticism from the representational
point of view is that compulsory constraints are represented in the same way as
the desired properties. Also the approach of choosing a large constant for the
strong constraints is not very general and might fail sometimes.

Formulation of TTOP2 in Datalognot,∨,w

As suspected, we will use our weak constraint system and fully exhaust the
possibilities of weights and layers.

But first we need to define the notion of days, which occurs throughout the
description of TTOP2. So, what we need to do is to require an input relation
which relates a period to a weekday. Let us call it period day/2.

Using this predicate, the additional “hard” constraint in σ, which states
that there should be no “holes” in the schedules of classes during days can be
formulated as follows:

planned1(C,P)← a(C, T, P,K). (3.21)

← period day(P1, D), period day(P2, D), period day(P3, D),

P1 < P2), P2 < P3, (3.22)

a(C, T1, P1,K1), not planned1(C,P2), a(C, T3, P3,K3).

Constraint 3.22 states that given 3 periods of the same day, one class should
not have a lecture during the earliest of these 3 periods, then have no lecture
in the middle one, and then again have some lecture in the greatest of these
periods. Note that we had to introduce the new predicate planned1 because we
needed to express that no lesson is taught to a particular class at a fixed period.

So much for the compulsory constraints. ∆, Ω, and Π contain desirable
criteria of different importance – both on the level of these classes and also
within them. [CDM98] suggests to view ∆ and Ω as on about the same level of
importance and Π to be less important. However, this choice is arbitrary and
we believe that didactic requirements should in general be more important than
organisational ones. So we will create a hierarchy of three levels of non-strict
constraints instead of two.

Concerning ∆, we introduce the following weak constraints, in order of ap-
pearance above:

• “No more than x teaching hours a day for each teacher.” If x is 4, the

56

corresponding constraint is then

⇐ period day(P1, D), period day(P2, D), period day(P3, D),

period day(P4, D), period day(P5, D),

a(C1, T, P1,K1), a(C2, T, P2,K2), a(C3, T, P3,K3),

a(C4, T, P4,K4), a(C5, T, P5,K5),

P1 6= P2, P1 6= P3, P1 6= P4, P1 6= P5,

P2 6= P3, P2 6= P4, P2 6= P5,

P3 6= P4, P3 6= P5,

P4 6= P5. [3 : ∆1]

(3.23)

In general:

⇐ period day(P1, D), . . . , period day(Pn, D),

a(C1, T, P1,K1), . . . , a(Cn, T, Pn,Kn),

P1 6= P2, . . . , P1 6= Pn,

...

Pn− 1 6= Pn. [3 : ∆1]

∆1 is the weight relative to other didactic requirements.

• For the requirement “A class should not have the same teacher every day
during the last hour” we have to define several predicates first, which allow
us to express the notion “class I has teacher J in period P , which is the
last lecture for class I on day D”.

We first define a predicate expressing “a(C, T, P,K) is the last lecture on
day D”. The easiest way to do this is to write a predicate notlast lecture,
which is true for all assigned lectures on a certain day which are not the
last one, that is, if a greater period to which a lecture is assigned exists
on the same day. Then the last lectures are simply those which are not
covered by notlast lecture. In fact, we would only need class-teacher-day
triples, but the information which period is the last one and which number
this lecture has, which is redundant for this particular purpose, might be
useful for other constraints, so we keep it.

notlast lecture(C, T, P,K,D)← a(C, T, P,K), period day(P,D),

a(C, T1, P1,K1), period day(P1, D),

P < P1. (3.24)

last lecture(C, T, P,K,D)← a(C, T, P,K), period day(P,D),

not notlast lecture(C, T, P,K,D).
(3.25)

We need to determine those class-teacher pairs which are together in all
the last lectures of this class. Clearly such a pair doesn’t exist if the class
has different teachers in its last lectures. So we might define a predicate
difflast/1 which is true for those classes which have different lecturers
in their last lectures. So if a class has teacher T in its last lecture, and

57

it does not have different teachers in its last lectures, teacher T is always
with class C in its last lecture.

difflast(C)← last lecture(C, T, P,K,D),

last lecture(C, T1, P1,K1, D1), T 6= T1. (3.26)

alwayslast(C, T)← last lecture(C, T, P,K,D), not difflast(C). (3.27)

Now the weak constraint is easy to formulate:

⇐ alwayslast(C, T). [3 : ∆2] (3.28)

Again, ∆2 is the weight relative to other didactic requirements.

• “Uniform distribution of the hours with the same teacher over the week”2.
For any lectures given by teacher t to class c, for which it is desirable (we
will see shortly that there are lectures for which this uniform distribution
is undesirable) we add a constraint

⇐ a(c, t, P1,K1), a(c, t, P2,K2),

period day(P1, D), period day(P2, D). [3 : ∆3]
(3.29)

stating that two lectures should possibly not be scheduled on the same
day. One probably does not want to do that with lectures of the type
described next. At least, one should use a smaller weight for them, so in
this case it makes sense to view ∆3 as a range of values rather than a fixed
one.

• “Some lectures should be given in pairs of periods”, means that two lec-
tures k1, k2 of some teacher c to class t should be given in consecutive
periods on the same day. Otherwise expressed, there should not be any
period between them, and they should not be scheduled on separate days.
So we introduce two weak constraints:

⇐ a(c, t, P1, k1), a(c, t, P2, k2),

p gt(P1, P), p gt(P2, P). [3 : ∆4] (3.30)

⇐ a(c, t, P1, k1), a(c, t, P2, k2),

period day(P1, D1), period day(P2, D1),

D1 6= D2. [3 : ∆4] (3.31)

Note that only consecutive lecture numbers should be chosen for these
double periods.

So much for the didactic desiderata ∆. Of course, one might be able to find
more such properties, these are just examples. Now we describe the formulation
of the organisational constraints presented above:

2The original paper states that subjects should be uniformly distributed, but we did not
define any subjects.

58

• “At least 2 teaching hours per day for each teacher”. This should rather
read “Not a singleton teaching hour on any day for a teacher”, since
teachers may have a free day. The criterion can then be formulated in a
rather straightforward manner:

severalhours(T,D)← a(C, T, P,K), a(C1, T, P1,K1),

period day(P,D), period day(P1, D),

P 6= P1. (3.32)

⇐ a(C, T, P,K), period day(P,D),

not severalhours(T,D). [2 : Ω1] (3.33)

Note that the layer is lower than in the ∆ cases. Ω1 describes the weight
within the organisational constraints.

• “As few holes as possible in the teachers’ schedules”, this is to be read as a
per-day constraint and is represented very much like in the case where we
wanted to forbid holes in the students’ timetables. The difference is that
this constraint is weak, and that teachers instead of classes are considered.

planned2(T, P)← a(C, T, P,K). (3.34)

hole on← period day(P1, D), period day(P2, D),

period day(P3, D), P1 < P2, P2 < P3,

a(C1, T, P1,K1), not planned1(T, P2),

a(C3, T, P3,K3). (3.35)

⇐ hole on(T,D) [2 : Ω2] (3.36)

Omega2 is again a weight relative to the other organisational constraints.

• “Concentrate holes on one day preferably (for parent-teacher meeting
hours)” means that it is bad if different teachers have holes on differ-
ent days. We reuse the predicate defined in the last point and thereby get
a simple formulation:

⇐ hole on(T1, D1), hole on(T2, D2), T1 6= T2, D1 6= D2. [2 : Ω3]
(3.37)

Ω3 is the penalty associated to these constraints.

• “Do not assign all available teachers in one period” means that it is bad if
no teacher is free in a period. First, we need a predicate which describes
the teachers:

t(J)← r(C, T, P,K). (3.38)

59

Next, we need a predicate to determine during what period which teachers
are teaching.

teaching(T, P)← a(C, T, P,K). (3.39)

There is a spare teacher at some period if a teacher exists who is not
teaching and who is not unavailable at this period.

reserve(P)← t(T), p(P), not teaching(T, P), not unavailable(T, P).
(3.40)

If there is a period in which there is no spare teacher, this costs Ω4 within
the organisational constraints.

⇐ p(P), not reserve(P). [2 : Ω4] (3.41)

We will now define the lowest level constraints – those of the teachers’ pref-
erences.

• “Some teachers do not like teaching in the morning.” For those, one should
define several weak constraints for early hours p and teacher t, probably
with greater weight for earlier hours.

⇐ a(I, t, p,K). [1 : Πt
1] (3.42)

where Πt
1 is the weight relative to a particular teacher.

• “Some teachers want to teach in the morning rather than in the after-
noon.” This is treated in the same way as with the type of constraint,
just with different weights.

• “A particular day off.” This is easy. Lectures which are scheduled in
periods on the particular day d for teacher t, get the weight Πt

2.

⇐ a(I, t, P,K), period day(P, d). [1 : Πt
2] (3.43)

• The teacher ranking can be enforced by choosing higher weights for higher-
ranked teachers. After all, the weights in this class of constraints should be
teacher dependent, because some teacher might deposit more preferences
than others, and those should then be assigned lower weights so that
they add up to a sum which corresponds to the ranking of the teacher
(lower rank – lower total weight). In other words, the weights should be
normalised and after that step the ranking should be taken into account.

60

3.3 Graph Problems

3.3.1 Graph-theoretic Preliminaries

Let us first recall some basics from graph theory, and thereby present our ter-
minology:

Definition 3.3.1 (Graphs)
An undirected graph Gu is a pair of sets (V,E), where V is an arbitrary set and
E is a set of unordered pairs {v1, v2}, where v1, v2 ∈ V . The elements of V are
referred to as nodes or vertices, those of E as edges. Note that {v1, v2} = {v2, v1}
holds.

A directed graph Gd is a pair of sets (V,A), where V is an arbitrary set and A
is a set of ordered pairs (v1, v2), where v1, v2 ∈ V . The elements of V are again
referred to as nodes or vertices, those of A as arcs. Note that (v1, v2) 6= (v2, v1)
holds.

The directed graph
−→
Gu of an undirected graph Gu = (V,E) is defined as

−→
Gu = (V,

−→
E), where

−→
E = {(v1, v2), (v2, v1) | {v1, v2} ∈ E}.

The undirected graph Gd of a directed graph Gd = (V,A) is defined as Gd =
(V,A), where A = {{v1, v2} | (v1, v2) ∈ A}. Note that with this transformation
information is lost, since several differing directed graphs are mapped onto the
same undirected graph.

A weighted directed (resp. undirected) graph is a directed (resp. undirected)
graph, which has some cost ci,j associated with each edge (i, j) (resp. {i, j}).

�

We will only consider graphs with a finite set of nodes. This implies that
the set of arcs (resp. edges) of these graphs is of finite size as well.

Definition 3.3.2 (Paths and Cycles, Chains and Circles)
A path in a directed graph Gd = (V,A) is a sequence of one or more arcs of A
(v1

1 , v2
1), . . . , (v1

n, v2
n)(n ∈ N), where ∀1 ≤ i < n : v2

i = v1
i+1.

A cycle is a path (v1
1 , v2

1), . . . , (v1
n, v2

n), where v1
1 = v2

n.
A chain in an undirected graph Gu = (V,E) is the undirected counterpart to

a path, and thus a sequence of one or more edges out of E {v1
1 , v2

1}, . . . , {v
1
n, v2

n},
where ∀1 ≤ i < n : v2

i = v1
i+1. Note that chains are reversible.

A circle is the undirected counterpart of a cycle, and thus a chain {v1
1 , v2

1},
. . . , {v1

n, v2
n}, where v1

1 = v2
n.

�

Definition 3.3.3 (Connected and Weakly Connected Graphs)
An undirected graph Gu = (V,E) is said to be connected, if for all distinct
vertices v1, v2 ∈ V a chain {v1, v

2
1}, . . . , {v

1
n, v2} exists.

A directed graph Gd = (V,A) is called weakly connected, if Gd is connected.
�

Definition 3.3.4 (Partial Graphs and Subgraphs)
A directed (resp. undirected) graph G′ = (V,L′) is a partial graph of a directed
(resp. undirected) graph G = (V,L) if L′ ⊆ L holds.

A directed (resp. undirected) graph G′ = (V ′, L′) is a subgraph of a directed
(resp. undirected) graph G = (V,L) if V ′ ⊆ V and L′ = {(v1, v2) | (v1, v2) ∈
L ∧ v1, v2 ∈ V ′} (resp. L′ = {{v1, v2} | {v1, v2} ∈ L ∧ v1, v2 ∈ V ′} hold. �

61

Definition 3.3.5 (Trees)
An undirected graph Gu is called a tree, if it is connected and no circle can be
constructed with its edges.

A directed graph Gd = (V,A) is called a tree, if |{v | (w, v) ∈ A}| = |V | − 1
and @v, w1, w2 ∈ V : (w1, v), (w2, v) ∈ A∧w1 6= w2. This condition implies that
each node except for one, which is called root of the tree, is the final node of
exactly one arc. It also implies that |A| = |V | − 1.

�

3.3.2 Classical Minimum Spanning Tree

Graph Theoretic Formulation

In the literature this problem also appears as “Shortest Spanning Tree”. Usu-
ally (for instance in [Chr75, Sed88, Pap94]) it is formulated over undirected
connected graphs.

A related problem dealing with general weakly connected directed graphs is
dealt with in Section 3.3.3.

Definition 3.3.6 (Spanning Tree)
A spanning tree of an undirected connected graph Gu = (V,E) (cf. Definition
3.3.1, Definition 3.3.3) is any partial graph G′

u = (V,E′) of Gu, which is a tree.
Let us denote the set of all spanning trees of an undirected connected graph

Gu by ST (Gu).
�

Definition 3.3.7 (Minimum Spanning Tree)
A minimal spanning tree of a connected weighted undirected graph Gu = (V,E)

is called GMST
u and defined as follows:

GMST
u = min

(V,E′)∈ST (Gu)

∑

{i,j}∈E′

ci,j

That is, the spanning tree of Gu which is minimal w.r.t. the sum of the costs
of its edges.

�

Example 3.3.1
Given the weighted undirected graph G depicted in Figure 3.10 on the following
page, all its spanning trees and the associated weights are shown in Figure 3.11
on the next page. One can immediately see that the spanning tree in Fig-
ure 3.11(c) on the following page is the one with minimal total weight.

�

Applications

Applications of instances of this problem are manifold. Some examples in the
literature are:

• Terminals in an electric network should be connected together such that
the total length of wire to be used is minimised in order to reduce stray
effects. [Chr75]

62

b

a

c

d

e

f
6

5

3

6

1 2

5

Figure 3.10: Example graph G

b

a

c

d

e

f
6

5

6

2

5

(a) Weight: 24

b

a

c

d

e

f
6

5

6

1

5

(b) Weight: 23

b

a

c

d

e

f
6

5
1 2

5

(c) Weight: 19

b

a

c

d

e

f
6

5

6

1 2

(d) Weight: 20

b

a

c

d

e

f
6

5

3

1

5

(e) Weight: 20

b

a

c

d

e

f
6

5

3

6

2

(f) Weight: 22

b

a

c

d

e

f
6

5

3

6

1

(g) Weight: 21

b

a

c

d

e

f
6

5

3

2

5

(h) Weight: 21

Figure 3.11: All spanning trees of G in Figure 3.10

63

• A pipeline network should be constructed such that out-of-town junctions
are not allowed and the amount of pipe material is minimised. [Chr75]

• In a network of agencies, different information channels exist, each of
which has some associated probability of interception. Find the way in
which a message can be spread to all agencies with minimal probability
of being heard by others. [Chr75]

• In the field of land use planning (or regional science) one has to con-
sider distribution channels between distributors and consuments. Usually,
at a place where there are distributors, there are also consuments and
vice versa. Such distribution networks may be represented by weighted
undirected graphs, in which the edges represent the distribution chan-
nels, where their weights can be viewed as overheads. When planning
new distribution channels (usually railways, roads etc.), all possible vari-
ants of these channels are packed into the graph, and the solution for the
Minimum Spanning Tree problem over this graph gives the plan with
minimum distribution overhead [Bök82].

It should be noted that in the scope of this problem multiple political
preferences have to be honored (e.g. a railway line should possibly not
be built in a recreational area). Our framework would provide sufficient
means to incorporate these considerations into the problem formulation.

Representation in Datalognot,∨,w – A Guess and Check Solution

The first representation of this problem in our language is straightforward from
the definition of a Minimum Spanning Tree.

But before, we consider the representation of the graph: We assume that we
only want to treat undirected graphs which do not have isolated nodes. It thus
suffices to store edge(X,Y) if there’s an edge {X,Y }. Therefore an edge {a, b}
is represented by either edge(a, b) or edge(b, a), but not both.

Since Spanning Trees are partial graphs, it is straightforward to consider all
partial graphs. An edge is either contained in a subgraph or it is not:

st(X,Y) ∨ nst(X,Y)← edge(X,Y). (3.44)

Having only rule 3.44 in the program, there is one model corresponding to
each possible partial graph.

Now we have to check which of these partial graphs are actually Spanning
Trees. The partial graph may not contain any circles. A graph contains a circle
iff there is one node from which a chain leads back to itself, with each edge in
the path being unique.

For simplicity, we will not represent chains, but paths in
−→
E , if the partial

graph is P = (V,E).

dst(X,Y)← st(X,Y). (3.45)

dst(Y,X)← st(X,Y). (3.46)

Later on we will need a predicate which tests the equality of two edges, which
we will define now.

64

node(X)← edge(X,Y). (3.47)

node(Y)← edge(X,Y). (3.48)

eq edge(X,Y,X, Y)← node(X), node(Y). (3.49)

Since we have paths representing chains, we do not want to have an arc
(X,Y) and its counterpart (Y,X) in the path, if the corresponding chain should
be unique (clearly (X,Y) and (Y,X) represent the same edge). But since the
criterion we want to check is whether a chain starting and ending in the same
node exists, it suffices for us to require that the retrograde arc (Y,X) of the
initial arc (X,Y) representing the first edge of the chain must not be in the
path. We will call (Y,X) the “forbidden” arc.

Therefore, when defining paths which could be cycles and thus circles in the
original potential spanning tree we have to keep track of the forbidden arc in
a path, so that it is not chosen for such a path, since such a cycle does not
correspond to a proper circle in the original graph.

stpath f(X,Y, Y,X)← dst(X,Y). (3.50)

Now, if we’ve got a path from X to Y 1 and an arc between Y 1 and Y , and
this is not the forbidden arc, we also have a path from X to Y which is a cycle
iff it is a circle in the original graph.

stpath f(X,Y,Xf, Y f)← stpath f(X,Y 1, Xf, Y f), dst(Y 1, Y),

not eq edge(Y 1, Y,Xf, Y f).
(3.51)

Not that we can not write Y 1 6= Xf, Y 6= Y f instead of not eq edge(Y 1, Y,Xf, Y f),
since it would not be possible to construct any path starting in X, which goes
beyond Xf .

Now, our undirected subgraph is free of circles iff there is no path without
the forbidden arc from one node to itself. We state this using a strong constraint
(since every spanning tree, and the minimum spanning tree in particular, must
satisfy this):

← stpath f(X,X,Xf, Y f). (3.52)

So the possible models for the program so far are all partial graphs not
containing a circle.

The remaining criterion is that the subgraph has to be connected to be a
spanning tree. A graph is connected, if for any pair of nodes there exists a chain
between them. We have almost defined this before as stpath f/4; but we did
not want the nodes to have a path to themselves. concerning reachability, a
node should always be reachable from itself, so we just need to extend our path
definition to become reflexive:

65

st reach(X,X)← node(X). (3.53)

st reach(X,Y)← stpath f(X,Y,Xf, Y f). (3.54)

Now we formulate the constraint: Given two nodes, it shouldn’t be the case
that either one is not reachable from the other.

← node(X), node(Y), not st reach(X,Y). (3.55)

So far the stable models of the program correspond to the spanning trees.
Now we want this spanning tree to have minimum added cost. Therefore we
create a weak constraint for each edge, assigning the weight of the original edge
to the respective constraint. All of these weak constraints are in the same default
layer.

⇐ st(X,Y).[: cXY]∀edge(X,Y) (3.56)

The resulting program – let us call it Pmst c is shown in Figure 3.3.2 on the
following page. The models of this program combined with a graph represen-
tation correspond to the minimum spanning trees, which are formed by the st
atoms in the respective model.

Note that the program is modular in the sense of [EGM97]: We can differ-
entiate between the guess part π1 (3.44), the circle-freeness part π2 (3.45, 3.46,
3.50, 3.51, 3.47, 3.48, 3.49, 3.52), the connectedness part π3 (3.53, 3.54, 3.55),
and the minimality part π4 (3.56). In the terminology of [EGM97]: π3 . π2,
π2 . π1, and π4 . π1, where . can sloppily be described as “uses”.

Representation in Datalognot,∨,w– A Solution Using Unstratified Nega-
tion

This representation tries to model the Prim algorithm as good as possible, us-
ing our particular implementation of computing stable models with weak con-
straints, explained in Chapter 4. Of course, doing this requires substantial
knowledge of the algorithm used to compute the models. Additionally, since the
representation is declarative, we have no method to express imperative state-
ments like “choose an arbitrary node”.

For this reason we assume that our database includes a fact root(n). defined
for exactly one arbitrary node n of the graph. This models the assignment
“Choose an arbitrary node” in the Prim algorithm. Any node can be selected,
because in this case of undirected graphs there is no determined root node.
We will transform the undirected graph (V,E) (given by edge(X,Y). facts, one
for each {X,Y } ∈ E; V is defined implicitly since we only consider connected
graphs) into a directed one using two rules:

arc(X,Y)← edge(X,Y). (3.57)

arc(Y,X)← edge(X,Y). (3.58)

66

st(X,Y) ∨ nst(X,Y)← edge(X,Y). (3.44)

stpath f(X,Y, Y,X)← dst(X,Y). (3.50)

stpath f(X,Y,Xf, Y f)← stpath f(X,Y 1, Xf, Y f), dst(Y 1, Y),

not eq edge(Y 1, Y,Xf, Y f). (3.51)

← stpath f(X,X,Xf, Y f). (3.52)

st reach(X,X)← stpath f(X,Y,Xf, Y f). (3.53)

st reach(X,Y)← stpath f(X,Y,Xf, Y f). (3.54)

← node(X), node(Y), not st reach(X,Y). (3.55)

⇐ st(X,Y).[: cXY]∀edge(X,Y) (3.56)

dst(X,Y)← st(X,Y). (3.45)

dst(Y,X)← st(X,Y). (3.46)

node(X)← edge(X,Y). (3.47)

node(Y)← edge(X,Y). (3.48)

eq edge(X,Y,X, Y)← node(X), node(Y). (3.49)

Figure 3.12: A constraint solution for Minimum Spanning Tree

Note that for any model M , arc(X,Y) ∈M ⇔ (X,Y) ∈
−→
E holds.

Next we determine the partial subgraphs, which are directed trees, the root of
which is n (Call them directed spanning trees with root in n). These correspond
one-to-one to the spanning trees of the undirected graph. In particular, the
minimal spanning tree corresponds to the minimal directed spanning tree of the
directed version of the graph.

Therefore, we view the given undirected graph as a directed one (for each
undirected edge there are two arcs). The strategy is to start with a one-node
tree and add an arc if its initial vertex is reached by the tree and its final
vertex is not yet reached . Of course, this description is procedural, but we can
reformulate it avoiding the “not yet” and “add”. To achieve this, let us first
have a look at the following example:

Example 3.3.2
Consider the undirected graph depicted in Figure 3.13(a) on the next page, call
it G = (V,E), where V = {a, b, c, d, e, f}, E = {{a, c}, {b, c}, {c, d}, {c, f},
{c, e}, {d, f}, {e, f}}, Figure 3.13(b) on the following page shows the directed

version
−→
G = (V,

−→
E), where

−→
E = {(a, c), (c, a), (b, c), (c, b), (c, d), (d, c), (c, f),

(f, c), (c, e), (e, c), (d, f), (f, d), (e, f), (f, e)}.
Now, consider a particular spanning tree of G (Figure 3.14(a) on the follow-

ing page), call it T = (V,ET), where ET = {{a, c}, {b, c}, {c, d}, {d, f}, {e, f}}.

If we choose d to be the root node, we get the directed tree
−→
Td =, as shown in

Figure 3.14(b) on the next page

If we look at the arcs of
−→
G which are not in

−→
Td (the dotted arcs in Figure 3.15

on the following page), each node but the root node (d in the case of Figure 3.15

on the next page), are reached by exactly one arc of
−→
Td. Indeed, this follows

67

b

a

c

d

e

f

(a) G

b

a d

e

fc

(b)
−→
G

Figure 3.13: Undirected and Directed Example Graph G

b

a

c

d

e

f

(a) T

b

a d

e

fc

(b)
−→
Td (rooted in d)

Figure 3.14: A Spanning Tree of G (as in Figure 3.13)

b

a d

e

fc

Figure 3.15:
−→
Td, arcs in

−→
G , but not in

−→
Td are dotted

68

directly from Definition 3.3.5. �

Having this example in mind, we may declare every arc in a graph outside,
if its final node is the root node or a final node of some different arc in the
directed spanning tree.

Now, one can describe the directed spanning tree declaratively: An arc is
part of the directed spanning tree, if its starting node is in the tree, and if the
arc is not outside.

st(X,Y)← reached(X), not outside(Y,X), arc(X,Y). (3.59)

A node is in the tree (or reached), if it is the root node or if it is the final
node of an arc in the directed spanning tree.

reached(X)← root(X). (3.60)

reached(X)← st(Y,X). (3.61)

A formal declaration of the outside property is still missing. An arc is outside
if its final node is the root node or if its final node is the final node of some arc
of the spanning tree and the considered arc is not itself part of the spanning
tree.

outside(Y,X)← root(Y), arc(X,Y). (3.62)

outside(Y,X)← st(Z, Y), arc(X,Y), Z 6= X. (3.63)

Up to now we have described a program which computes the directed span-
ning trees of a graph. Our final goal is now to compute the minimum directed
spanning tree. To this end, add the following weak constraints:

⇐ st(X,Y).[: cXY]∀edge(X,Y) (3.64)

⇐ st(Y,X).[: cXY]∀edge(X,Y) (3.65)

The resulting program – call it Pst u – is shown in Figure 3.16 on the fol-
lowing page.

3.3.3 Minimum Spanning Tree of a Directed Graph

Although similar to the Classical Minimum Spanning Tree Problem described
in Section 3.3.2, some peculiarities arise when considering Minimum Spanning
Trees of directed graphs. It turns out that some assumptions about the graph
and the spanning trees have to be dropped. But first, let us define the problem
formally:

Graph Theoretic Formulation

Definition 3.3.8 (Spanning Tree of a Directed Graph)
A spanning tree of a directed connected graph Gd = (V,A) (cf. Definition 3.3.1,
Definition 3.3.3) is any partial graph G′

d = (V,A′) of Gd which is a tree.

69

st(X,Y)← reached(X), not outside(Y,X), arc(X,Y). (3.59)

reached(X)← root(X). (3.60)

reached(X)← st(Y,X). (3.61)

outside(Y,X)← root(Y), arc(X,Y). (3.62)

outside(Y,X)← st(Z, Y), arc(X,Y), Z 6= X. (3.62)

⇐ st(X,Y).[: cXY]∀edge(X,Y) (3.64)

⇐ st(Y,X).[: cXY]∀edge(X,Y) (3.65)

arc(X,Y)← edge(X,Y). (3.57)

arc(Y,X)← edge(X,Y). (3.58)

Figure 3.16: A solution using unstratified negation for Minimum Spanning

Tree

Let us denote the set of all spanning trees of an undirected connected graph
Gd as ST (Gd).

�

Definition 3.3.9 (Minimum Spanning Tree of a Directed Graph)
A minimal spanning tree of a connected weighted directed graph Gd = (V,A),

called GMST
d , is defined as follows:

GMST
d = min

(V,A′)∈ST (Gd)

∑

(i,j)∈A′

ci,j

That is, the spanning tree of Gd which is minimal w.r.t. the sum of the cost
of its arcs.

�

Definition 3.3.8 and Definition 3.3.9 are very similar to Definition 3.3.6 and
Definition 3.3.7, respectively.

But there is a fundamental difference if we try to describe those graphs
which have spanning trees, let alone minimum ones. In the undirected case we
could say that every connected graph has at least one spanning tree, and every
disconnected graph has none.

In the case of directed graphs we have several flavours of connectedness –
strongly connected, iff there is at least one path from every node to every other
node, unilateral, iff there is at least one path between two distinct nodes, weakly
connected, iff the corresponding undirected graph is connected, or disconnected.
Clearly, a strongly connected graph is also unilateral, and a unilateral graph is
also weakly connected.

It turns out that unilateral graphs always have spanning trees:

Proposition 3.3.1
If a directed graph G = (V,A) is unilateral, it has a directed spanning tree
S = (V,A′), A′ ⊆ A.

70

b c

a

d

(a) Spanning Trees Exist

b c

a

(b) No Spanning Trees

Figure 3.17: Weakly Connected Graphs With and Without Spanning Trees

Proof There is at most one node in V , which is not the final node of an
arc. If there were more than one, a path between these two couldn’t exist. But
that means that a subset of A exists, so that each node in V is the final node
of exactly one arc, except for one node, which is not a final node of an arc. The
last sentence is the criterion for a tree, so G has spanning trees. 4

Weakly connected graphs may or may not have spanning trees, as can be
seen in Figure 3.17. Disconnected graphs obviously do not have spanning trees.

Applications

Reconsidering the example of land use planning, we made the assumption that
at a place where there are distributors, there are also consuments. If we drop
this, we arrive at adirected graph, since distribution channels only go from
distributors to consuments. Still we want to minimise the distribution overhead,
so we are again interested in the minimum directed spanning tree.

Representation in Datalognot,∨,w

A substantial difference to the case of undirected graphs is, that we may not
choose an arbitrary node as root node. For instance every spanning tree of the
graph shown in Figure 3.17(a) must be rooted in a.

We can extend our unstratified program presented in Figure 3.16 on the
page before to handle this difference. The graph representation here is by the
predicate arc/2, so the node predicate has to be slightly altered:

node(X)← arc(X,Y). (3.66)

node(Y)← arc(X,Y). (3.67)

We must take precautions that the given graph might not have any spanning
tree. In the program in Figure 3.16 on the preceding page, we assumed that the
graph is connected, do a spanning tree had to exist.

So we have to add a constraint which states that a node in the graph, which
is not reached should not exist:

71

← node(X), not reached(X). (3.68)

Further, we may not assume any node to be the root node, so one has to be
guessed:

root(X) ∨ nroot(X)← node(X). (3.69)

We want to have at least one root node:

have root← root(X). (3.70)

← not have root. (3.71)

But we do not want more than one:

← root(X), root(Y), X 6= Y. (3.72)

Last, the weak constraints need to be updated for the arc representation:

⇐ st(X,Y).[: cXY]∀arc(X,Y) (3.73)

The complete program with the remaining rules from the program in Fig-
ure 3.16 on page 70 is depicted in Figure 3.18 on the following page.

3.3.4 Minimum Steiner Trees

Graph Theoretic Formulation

This is similar to the Minimum Spanning Tree problem described in Section
3.3.2. The difference is that the task is to find a minimal spanning tree of a
subgraph of the given graph, which includes all of a specified set of nodes, which
are called Steiner nodes. So the Minimum Spanning Tree problem is a particular
instance of this, where the set of nodes, which should be included in the Steiner
Tree coincides with the set of nodes of the original graph.

Definition 3.3.10 (Steiner Tree of an Undirected Graph)
Given an undirected connected graph Gu = (V,E) and a set of Steiner nodes
S ⊆ V , a Steiner tree of Gu is any subgraph G′

u = (V ′, E′) of Gu which is a
tree and for which S ⊆ V ′ holds.

Let us denote the set of all Steiner trees of an undirected connected graph
Gu as STT (Gu).

�

Definition 3.3.11 (Minimum Steiner Tree of an Undirected Graph)
A minimum Steiner tree of a connected weighted undirected graph Gu = (V,E),

called GMSTT
d , is defined as follows:

GMSTT
u = min

(V,E′)∈STT (Gu)

∑

(i,j)∈E′

ci,j

�

72

← node(X), not reached(X). (3.68)

← not have root. (3.71)

st(X,Y)← reached(X), not outside(Y,X), arc(X,Y). (3.59)

reached(X)← root(X). (3.60)

reached(X)← st(Y,X). (3.61)

outside(Y,X)← root(Y), arc(X,Y). (3.62)

outside(Y,X)← st(Z, Y), arc(X,Y), Z 6= X. (3.62)

⇐ st(X,Y).[: cXY]∀arc(X,Y) (3.73)

root(X) ∨ nroot(X)← node(X). (3.69)

have root← root(X). (3.70)

← root(X), root(Y), X 6= Y. (3.72)

node(X)← arc(X,Y). (3.66)

node(Y)← arc(X,Y). (3.67)

Figure 3.18: A solution for Directed Minimum Spanning Tree

Actually, this is the graph theoretical version of the so-called Euclidean
Steiner Problem, which occurs in geometry. For more details, we refer to [Chr75]
and [Pap94].

Applications

There are many applications which have to solve this problem: For example
the application of connecting cities with pipelines described above did not allow
out-of-town junctions. If we assume that the company, which wants to build this
pipeline networks, has identified several places where such out-of-town junctions
might be built, the problem becomes the following: The nodes of the graph
represent cities and possible junctions, but only the cities are in the set of
Steiner nodes, and the task is to find a minimum Steiner tree.

Representation in Datalognot,∨,w

This problem is easy to represent reusing the program shown in Figure 3.3.2 on
page 67.

The only thing which needs altering is constraint 3.55, since not all nodes
have to be reached, but just the Steiner nodes. The requirement for circle-
freeness still holds.

If we assume that these nodes are represented with a predicate steiner, the
constraint becomes:

← steiner(X), steiner(Y), notst reach(X,Y). (3.74)

73

st(X,Y) ∨ nst(X,Y)← edge(X,Y). (3.44)

stpath f(X,Y, Y,X)← dst(X,Y). (3.50)

stpath f(X,Y,Xf, Y f)← stpath f(X,Y 1, Xf, Y f), dst(Y 1, Y),

not eq edge(Y 1, Y,Xf, Y f). (3.51)

← stpathf (X,X,Xf, Y f). (3.52)

st reach(X,X)← stpath f(X,Y,Xf, Y f). (3.53)

st reach(X,Y)← stpath f(X,Y,Xf, Y f). (3.54)

← steiner(X), steiner(Y), not st reach(X,Y).
(3.74)

⇐ st(X,Y).[: cXY]∀edge(X,Y) (3.56)

dst(X,Y)← st(X,Y). (3.45)

dst(Y,X)← st(X,Y). (3.46)

node(X)← edge(X,Y). (3.47)

node(Y)← edge(X,Y). (3.48)

eq edge(X,Y,X, Y)← node(X), node(Y). (3.49)

Figure 3.19: A constraint solution for Minimum Steiner Tree

The resulting program is depicted in Figure 3.19.

74

Chapter 4

Algorithms

The algorithms which we are going to present in this chapter rely on the one
presented for Datalognot,∨ in [LRS97]. We will give some of the definitions,
propositions and theorems taken from there, but refer to [LRS97] for proofs and
the full background.

Note that by defining an algorithm which computes the preferred stable
models of Datalognot,∨,w we also have a means to compute the consistent
preferred answer sets, as shown in Section 2.6.6.

4.1 Unfoundedness

As we will see later on, unfounded sets and the related unfounded-free inter-
pretations are fundamental for the algorithms. In this section, we will formally
define these and some related notions. In Section 4.2 we will then give an
efficient algorithm for checking unfounded-freeness.

First we define the notion of unfounded sets, which is also crucial in the
definition of the well-founded semantics. Intuitively, a set of ground atoms is
an unfounded set w.r.t. a program and a possibly partial interpretation if there
is reason to assume that these atoms are false w.r.t. the interpretation.

Definition 4.1.1 (Unfounded sets [LRS97])
Given a program P ′ ∈ ΠDatalognot,∨,w , its grounded abstract version P =
grounding(abstract(P ′)), and a (possibly partial) interpretation I, the set
of unfounded sets w.r.t. P (and P ′) and I is UP,I , defined as

UP,I = {U | U ⊆ HB(P),∀(H,B) ∈ P : U ∩H 6= ∅ →

(B ∩ not (I) 6= ∅ (4.1)

∨B+ ∩ U 6= ∅ (4.2)

∨ (H − U) ∩ I 6= ∅)} (4.3)

�

So an unfounded set must satisfy at least one of the conditions (4.1, 4.2, 4.3)
for every rule in which one of the members of the unfounded set occurs in the
head.

75

4.1 means that the body is false w.r.t. I, 4.2 states that some positive literal
in the body belongs to the unfounded set UP,I , finally 4.3 holds if an atom in
the head of the rule, which is not in UP,I , is already true w.r.t. I. Note that
constraints cannot have any significance in this definition, since the precondition
can never be true.

Example 4.1.1
Let P1 be a program modelling some incomplete knowledge about creatures and
their genders:

P1 = { woman ∨ man← creature, not animal.,

stallion ∨ mare← creature, animal, horse.,

creature.}

Given the interpretation I1 = {creature, not horse}, then

UP1,I1
= { {stallion},

{mare},

{stallion, mare},

∅}

All the nontrivial unfounded sets exist because of 4.1, as not horse falsifies the
body of the second rule.
Given another interpretation I2 = {creature, not animal, man, woman} to P1,
then

UP1,I2
= UP1,I1

∪ { {stallion, woman},

{mare, woman},

{stallion, mare, woman},

{stallion, man}

{mare, man},

{stallion, mare, man}}

Now, in addition to the unfounded sets w.r.t. I1, any extension of the sets
contained in UP1,I1

by either man or woman, but not both, is an unfounded set
because of 4.3. �

We will be interested in interpretations not containing any atoms which are
also contained in some unfounded set with respect to the considered interpreta-
tion and some program. These interpretations are called unfounded-free w.r.t. a
program. After all, an interpretation which contains atoms for which the inter-
pretation itself gives reason to be false is not really desirable, since it contradicts
itself in some way, as indicated by Example 4.1.1.

76

Definition 4.1.2 (Unfounded-free Interpretations [LRS97])
The set of unfounded-free interpretations w.r.t. a program P ′ ∈ ΠDatalognot,∨,w

and its grounded abstract counterpart P = grounding(abstract(P ′)) is com-
prised of those (possibly partial) interpretations Iwhich are disjoint with all
unfounded sets w.r.t. P and I.

UFP = {I | I ⊆ HB(P) ∪HBnot(P), I+ ∩ atoms(I−) = ∅,

∀U ∈ UP,I : I ∩ U = ∅}

�

Example 4.1.2
Considering Example 4.1.1, we see that I1 ∈ UFP1

, but I2 6∈ UFP1
. �

Later on, we will also use the notion of the greatest unfounded set. This is
the maximal set of atoms w.r.t. set inclusion, for which an interpretation gives
reason to assume their falsity. Note that such a set need not exist in the case
of disjunctive programs – it is guaranteed to exist in the non-disjunctive case.

Definition 4.1.3 (Greatest Unfounded Set [LRS97])
The greatest unfounded set GUSP(I) of a program P ′ ∈ ΠDatalognot,∨,w and
its grounded abstract version P = grounding(abstract(P ′)) w.r.t. a (possibly
partial) interpretation I is the union of all unfounded sets of P w.r.t. I which
is itself an unfounded set.

GUSP(I) =







⋃

U∈UP,I

U if
⋃

U∈UP,I

U ∈ UP,I

undefined else

We also define the set of interpretations for a given program for which the
greatest unfounded set exists, and call it IP :

IP = {I ⊆ (HB(P) ∪HBnot(P) | atoms(I+) ∩ atoms(I−) = ∅,

GUSP(I) is defined }

�

Example 4.1.3
Consider P1 from Example 4.1.1. GUSP1

(I1) = {stallion, mare} whereas
GUSP1

(I2) does not exist, since {stallion, mare, man, woman} 6∈ UP1,I2
. There-

fore I1 ∈ IP1
, but I2 6∈ IP1

. �

Note that by Proposition 3.7 in [LRS97] UFP ⊆ IP holds, which means that
I1 ∈ UFP1

, I2 6∈ UFP1
and I1 ∈ IP1

, I2 6∈ IP1
in our example is not simply a

coincidence.

4.2 Checking Unfounded-freeness

In this section, we will define a function which checks unfounded-freeness. This
function relies on the operator RP,I and several results which were presented
and proved in [LRS97] and we will use this check in our algorithm.

We start by defining the operator RP,I , which derives from a given set of
atoms those which are unfounded.

77

Definition 4.2.1 (RP,I – the unfoundedness operator)
Given a grounded abstract program P = grounding(abstract(P ′)) of some
P ′ ∈ ΠDatalognot,∨,w and a (possibly partial) interpretation I, let

RP,I : P(HB(P))→ P(HB(P))

RP,I(X) = {a | a ∈ X,

∀(H,B) ∈ P :

a ∈ H → (B ∩ (not (I) ∪X) 6= ∅ ∨ (H − {a}) ∩ I 6= ∅)}

�

By Proposition 6.5 in [LRS97] for any grounded abstract program P =
grounding(abstract(P ′)), where P ′ ∈ ΠDatalognot,∨,w and any total interpre-
tation I for P, if the sequence R0 = I+, . . . , Rn = RP,I(Rn−1) converges to the
limit Rω

P,I(I+) = ∅, then I ∈ UFP . Note that constraints again do not alter
the behaviour of this operator.

We will now consider a special class of programs called head-cycle-free pro-
grams (HCF for short), for which unfounded-freeness checking will be very effi-
cient. First we show what head-cycle freeness is and how to determine whether
a program is HCF. To this end we have to define dependency graphs:

Definition 4.2.2 (Dependency Graphs)
Given a program P ′ ∈ ΠDatalognot,∨,w and its grounded abstract version P =
grounding(abstract(P ′)), the directed graph DGP = (V,A) is defined as fol-
lows:

V = { p | p ∈ predicates(P)}

A = {(p1, p2) | ∃(H,B) ∈ P :

(∃b ∈ B+ : p1 = predicatesA(b))

∧ (∃a ∈ H : p2 = predicatesA(a))}

So for every predicate there is a node, and an arc from one node to another
exists if its starting node occurs positively in the body of a rule and its final
node occurs in the head of the same rule. �

Definition 4.2.3 (Collapsed Dependency Graphs)
The collapsed dependency graph D̂GP = (V̂ , Â) of a program P ′ ∈ ΠDatalognot,∨,w ,
the grounded abstract program P = grounding(abstract(P ′)), and its depen-
dency graph DGP is defined as

V̂ = {Q ⊆ V | v1, v2 ∈ Q⇔ a path from v1 to v2 and from v2 to v1 exists,

or v1 = v2}

Â = {(v1, v2) | ∃u1 ∈ v1, u2 ∈ v2 : (u1, u2) ∈ A}

This means that all nodes in a cycle are collapsed to one node, preserving the
arcs up to eliminating duplicates. The nodes in this graph are called compo-
nents. �

We are now ready to give the definition of HCF programs, which also serves
as a method for checking this property.

78

Definition 4.2.4 (Head-cycle-freeness)
A program P ′ ∈ ΠDatalognot,∨,w and P = grounding(abstract(P ′)), its grounded
abstract version, is head-cycle-free, iff no two predicates occurring in the head
of one rule depend recursively on each other, i.e., they are not both in the same

node of the collapsed dependency graph D̂GP = (V̂ , Â). So the following must
hold for any HCF program:

∀p1, p2 ∈ predicates(P) :((p1 6= p2 ∧ p1 = predicatesA(a1)

∧ p2 = predicatesA(a2)

∧ a1, a2 ∈ H ∧ (H,B) ∈ P)

→ (@Q ∈ V̂ : p1, p2 ∈ Q))

�

Theorem 6.9 in [LRS97] states that for HCF programs the propertyRω
P,I(I+) =

∅ holds for every unfounded-free interpretation I. However, in the general case
there may be unfounded-free interpretations for which Rω

P,I(I+) = ∅ does not
hold.

For further optimisation, Lemma 6.4 in [LRS97] indicates that for every
unfounded set U ∈ UP,I (for a total interpretation I) for which U ⊆ J ⊆ HB(P)
holds, also U ⊆ Rω

P,I(J) must hold. So if a program is not HCF, it is not
necessary to check for all subsets of a given interpretation I whether it is an
unfounded set – it suffices to check all subsets of Rω

P,I(I+) for unfoundedness.
Yet another improvement is achieved by considering only components of a

program. Before we go into detail, we need to define a few technicalities:

Definition 4.2.5
Given a set A ⊆ Atoms and a set P ⊆ Predicates let

A

P
= {a ∈ A | predicatesA(a) ∈ P}

Additionally, given a program P ′ ∈ ΠDatalognot,∨,w , the grounded abstract
program P = grounding(abstract(P ′)), and a set P ⊆ Predicates let

subP(P) = {(H,B) | (H,B) ∈ P,

predicates(H) ∩ {p | a ∈ H, p = predicatesA(a)} 6= ∅}

�

For non-HCF programs we can utilise Proposition 6.11 in [LRS97]: If an
interpretation I contains an unfounded set w.r.t. P, there exists a component

(a node Q of D̂GP) such that the restriction of I+ to Q (I+

Q
) contains an

unfounded set w.r.t. the program which has been restricted to this component
(subP(Q)).

This means that it is sufficient to check unfounded-freeness for all restrictions
of the interpretation and the program to the components of the dependency
graph. If one of them is not unfounded-free, the check fails, and only if all of
them are unfounded-free, the whole interpretation is unfounded-free.

79

Function unfounded free(P: AbstractProgram; I: SetOfLiterals) : Boolean;
var X, Y, J: SetOfLiterals;

Q: SetOfPredicates;
begin

for Q ∈ V̂ , D̂GP = (V̂ , Â) do (* for each component Q *)

X := I+

Q
;

repeat (* compute Rω
subP(Q),I(I

+

Q
) *)

J := X;
X := RsubP(Q),I(J)

until J = X;

if X 6= ∅ (* Rω
subP(Q),I(I

+

Q
) 6= ∅ *)

then if subP(Q) is HCF
then return False; (* by Theorem 6.9 in [LRS97] *)
else (* component is not HCF *)

for Y ⊆ X do

(* check each subset of Rω
subP(Q),I(I

+

Q
) for unfoundedness *)

if (Y 6= ∅) ∧ (Y ∈ UsubP(Q),I)
then return False;

end;
end; (* all components are unfounded-free *)
return True; (* by Lemma 6.4 in [LRS97] *)

end;

Figure 4.1: A function which checks unfounded-freeness of I given a program
P, originally defined in [LRS97]

80

Combined with the optimisation for HCF programs, we arrive at the algo-
rithm for checking unfounded-freeness depicted in Figure 4.1 on the next page,
which originally appeared in [LRS97].

For each restriction of the program and the interpretation to a component
the algorithm first computes the fixpoint of R. If the program restricted to the
component is head-cycle-free and the fixed point is not ∅, the original interpre-
tation is not unfounded-free w.r.t. the complete program by virtue of Lemma
6.4, Theorem 6.9, and Proposition 6.11 in [LRS97]. We may thus return False.

However, if the program restricted to the component is not head-cycle-free,
we have to consider every subset of the fixed point and check whether it is an
unfounded set w.r.t. the program restricted to the component and the original
interpretation. If one such set is unfounded, we know by virtue of Lemma 6.4 and
Proposition 6.11 in [LRS97] that the original interpretation is not unfounded-
free w.r.t. the complete program, and so False is returned.

If the function never returned False while considering all restrictions to com-
ponents, then no non-empty interpretation (restricted to a component) contains
an unfounded set w.r.t. the program (restricted to the same component). By
Proposition 6.11 in [LRS97], the original interpretation is then unfounded-free
w.r.t. the entire program, and we may return True.

4.3 Operators for the Computation of Stable Mod-
els

In order to compute stable models, we introduce several operators, which will
be directly used in the algorithm. The first one is the immediate consequence
operator adapted to the disjunctive case.
TP derives those atoms from an arbitrary (possibly partial) interpretation

which are sure to belong to every model which is a superset of the given partial
interpretation. This is the case for a head atom which occurs in a rule, in
which the body evaluates to true and all head atoms except the one we consider
evaluate to false. Note that only positive literals are derived from an initial set
of (negation-as-failure) literals.

Definition 4.3.1 (TP – the immediate consequence operator)
Given a program P ′ ∈ ΠDatalognot,∨,w and its grounded abstract version P =
grounding(abstract(P ′)), TP is defined as

TP : P(HB(P) ∪HBnot(P))) → P(HB(P))

TP(I) = {a ∈ HB(P) | ∃(H,B) ∈ P :

(a ∈ H) ∧ (H − {a} ⊆ not (I)) ∧ (B ⊆ I)}

�

Note that TP cannot infer anything from strong constraints, since their head
never contains any atom.

A generalisation of TP is T P , which does not only infer new atoms, but also
keeps all literals from its input set. T P is often termed inflationary immediate
consequence operator.

81

Definition 4.3.2 (T P – inflationary immediate consequence operator)
Given the preconditions of Definition 4.3.1, let

T P : P(HB(P) ∪HBnot(P)) → P(HB(P) ∪HBnot(P))

T P(I) = I ∪ TP(I)

�

Obviously, this operators are too weak to generate models since no negative
information can be derived.

To this end we define an extension of the operator used in [vRS91] to define
the well-founded model, called WP , as proposed in [LRS97]. In addition to
TP(I), it derives the negation of the greatest unfounded set as negative infor-
mation. Since the greatest unfounded set need not exist in the disjunctive case,
the domain of this operator is IP , the interpretations which have such a greatest
unfounded set. This complies with the notion of negation-as-failure, since the
greatest unfounded set is the largest set of atoms which are failed to be derived
in this step of the computation.

Definition 4.3.3 (WP – the well-founded operator)
Given the preconditions of Definition 4.3.1, let

WP : IP → P(HB(P) ∪HBnot(P))

WP(I) = TP(I) ∪ not (GUSP(I))

�

However, we have not given a constructive definition of GUSP(I) yet. We
define an operator ΦI,P which derives the complementary set of GUSP(I) w.r.t.
HB(P), i.e., HB(P)−GUSP(I).

ΦI,Pderives exactly those atoms which are not contained in any unfounded
set of the given interpretation, which must be in IP . This means that we choose
those head atoms for which some rule exists, so that the following conditions
are met: the body is sure not to be false, that no positive body literal is in an
unfounded set (note that this works if we apply the operator to sets which do
not contain any unfounded atom only), and no head atom is already in I.

Definition 4.3.4 (ΦI,P – inverse greatest unfounded set operator)
Given the preconditions of Definition 4.3.1, and additionally an interpretation
which has the greatest unfounded set w.r.t. P, I ∈ IP , we define

ΦI,P : HB(P)→HB(P)

ΦI,P(X) = {a | @,∃(H,B) ∈ grounding(abstract(P)) :

a ∈ H ∧B ∩ not (I) = ∅ ∧B+ ⊆ X ∧H ∩ I = ∅}

�

Note that neither strong nor weak constraints interfere with this operator. In
fact strong constraints do not have any impact on unfounded sets at all because
these are defined by atoms occuring in heads.

82

In [LRS97], it has been proved that the sequence φ0 = I, . . . , φk = I ∪
ΦI,P(φk−1) converges to a limit φλ, where λ is polynomial in |HB(P)|, and can
therefore be used to efficiently compute GUSP(I) of an arbitrary I ∈ IP .

Now we are finally in the position to compute WP . By Proposition 5.6
in [LRS97], the sequence W0 = ∅, . . . ,Wn = WP(Wn−1) converges to a limit
Wω

P(∅) for every grounded abstract program P = grounding(abstract(P ′)),
P ′ ∈ ΠDatalognot,∨,w and ∀M ∈ SM(P) : M ⊇ Wω

P(∅). Note that we could
extend this result from Datalognot,∨ to Datalognot,∨,w because strong con-
straints do not interfere with the operators as noted above, and weak constraints
are not even considered in the definition, so they do not alter the behaviour of
these operators either.

4.4 Possibly-true Conjunctions

Considering possibly-true conjunctions is a crucial point in the computation.
One may think of possibly-true conjunctions as those negative rules in the body
combined with one atom in the head which are needed to satisfy a rule which is
not yet completely satisfied because of negation-as-failure literals in the body,
which are left undefined by some partial interpretation.

Definition 4.4.1 (Possibly-true Conjunctions)
Given a grounded abstract program P = grounding(abstract(P ′)), where
P ′ ∈ ΠDatalognot,∨,w and a (possibly partial) interpretation I, a possibly-true
conjunction is the set of one positive literal appearing in the head of some rule
and all negative literals in the body (4.4), if the head is not true w.r.t. I (4.5),
the positive part of the body is true w.r.t. I (4.6), and the negative part of the
body is not false w.r.t. I (4.7).

PTP(I) = {{a, not b1, . . . , not bn} | ∃(H,B) ∈ P :

a ∈ H, {not b1, . . . , not bn} = B−, (4.4)

H ∩ I = ∅, (4.5)

B+ ⊆ I, (4.6)

B− ∩ not (I) = ∅} (4.7)

�

Example 4.4.1
Consider the program P1 from Example 4.1.1 and let I = {creature}. Then,
the possibly-true conjunctions are:

PTP(I) = {{woman, not animal}, {man, not animal}}

Note that the second rule does not contribute any possibly-true conjunction,
since the positive part of the body is not true w.r.t. I. �

Note that neither strong nor weak constraints can contribute any possibly-
true conjunction.

83

4.5 A Preliminary Algorithm for Datalognot,∨

Programs

We are now able to reproduce the algorithm given in [LRS97] for the com-
putation of stable models of Datalognot,∨ programs. Here it is defined for
Datalognot,∨,w programs, since no constraints whatsoever are considered in
this algorithm. This is due to the fact that the semantics of the operators does
not change when defined over programs with constraints.

The algorithm relies mainly on the well-founded operator (Definition 4.3.3),
and on the notion of possibly-true conjunctions (Definition 4.4.1) combined
with the inflationary immediate consequence operator (Definition 4.3.2). It
also uses the efficient algorithm for checking the unfounded-free property of
interpretations defined in Section 4.1. The complete algorithm is depicted in
Figure 4.5 on page 86, and we will now analyse it, starting with the part marked
as (* Main *).

As stated above,Wω
P(∅) is contained in every stable model of P ∈ ΠDatalognot,∨

(if any stable model exists for P) by Proposition 5.6 in [LRS97]. So the main
function starts by calculating WP(∅), WP(WP(∅)) and so on, until the fixpoint
Wω

P(∅) is reached. This is done in the repeat . . . until loop.
Then, we have to check whether Wω

P(∅) is a stable model. By virtue of
Proposition 6.16 in [LRS97] this is the case if PTP(Wω

P(∅)) = ∅. Corollary 6.17
in [LRS97] also tells us that if this condition holds, Wω

P(∅) is the only stable
model of P. This is achieved by the test right after the repeat . . . until loop.

However, if PTP(Wω
P(∅)) 6= ∅, we have to consider those possibly-true con-

junctions. To this end, in [LRS97] a computation is defined:

Definition 4.5.1 (Computation [LRS97])
A sequence of sets of ground negation-as-failure literals {VP

n | n ∈ N} (note that
this set has infitely many members) is called a computation of P, if

V0 =Wω
P(∅)

Vn+1 =







T P(Vn) if T P(Vn) 6= Vn

X ∪ Vn, X ∈ PTP(Vn) if T P(Vn) = Vn, PTP(Vn) 6= ∅

Vn if T P(Vn) = Vn, PTP(Vn) = ∅

�

For all computations {VP
n | n ∈ N} ∃k : ∀j > k : VP

k = VP
j holds. We refer to

the respective VP
k s as VP

ω . It follows directly from our definition (and is in part
also formally proved as Lemma 6.21 of [LRS97]), that VP

ω must be a fixpoint
of T P and PTP(VP

ω) = ∅ must hold, too. For this reason, it is safe to split an
actual computation into two alternating phases: computing a fixpoint to T P

and choosing a possibly-true conjunction – until no possibly-true conjunction
exists.

Theorem 6.22 of [LRS97] states that for each computation {VP
n | n ∈ N}, if

VP
ω ∪ not (HB(P) − VP

ω) (i.e., the set VP
ω plus all atoms which are undefined

w.r.t. VP
ω considered negated) is unfounded-free, then its positive part is a stable

model. Finally, Theorem 6.23 in [LRS97] states that every stable model of some
program P ∈ ΠDatalognot,∨ is of the form VP

ω ∪ not (HB(P) − VP
ω) for some

computation {VP
n | n ∈ N}.

84

We describe the computation of all VP
ω as a recursive procedure, which es-

sentially encodes a depth first search in the tree in whichWω
P(∅) is the root node

and each of the other nodes has as many successors as possibly-true conjunc-
tions exist, where each successor represents the set of literals after a particular
possibly-true conjunction has been chosen and subsequently the fixpoint of T P

has been computed. Every path in this tree represents a computation up to VP
ω .

The procedure starts at an arbitrary node of this tree. We know that Vn,
the set of literals representing this node, is a fixpoint of T P . There are two
cases:

1. There are no possibly-true conjunctions. Then we have arrived at some
VP

ω and need to check whether VP
ω ∪not (HB(P)−VP

ω) is unfounded-free.
If it is, we have found a stable model (by Theorem 6.22 in [LRS97]) and
output it. Then the procedure backtracks.

2. Possibly-true conjunctions exist. Then we have to consider them all, one
at a time. We do that depth first, i.e., we choose one possibly-true con-
junction, add it to the preliminary interpretation, compute its fixpoint
w.r.t. T P , and call the procedure recursively, since we have then arrived
at a new node in the tree. After the procedure has returned, we add the
next possibly-true conjunction , compute the fixpoint w.r.t. T P , call the
procedure recursively and so on until every possibly-true conjunction has
been chosen.

Before the procedure is called recursively, a consistency check is made.
Since proper interpretations and therefore also models and stable models
have to be consistent by definition and subsequent applications of opera-
tors can only add literals, no model can be computed in the subtree below
a node represented by an inconsistent set of literals. We may thus safely
skip the recursive call in this case.

For the output, the negative part of the models is removed to be consistent
with Definition 2.6.9.

4.6 Strong Constraints

So far we did not consider any constraints at all. Let us now focus on how we
can integrate strong constraints in the algorithm.

It is clear that we need not change much of it, since strong constraints just
invalidate some of the models which have been computed. So a näıve approach
would be to add constraint checks after a stable model has been found and
before doing the output.

However, one can do better: If during a computation we arrive at an inter-
pretation which makes the body of a strong constraint true and thus violates it,
it is clear that we can abandon this computation, since the inflationary operator
and the subsequent additions of possibly true conjunctions cannot add anything
which makes the strong constraint false or undefined again.

But one has to be careful with atoms which are yet undefined w.r.t. the
preliminary interpretation. In contrast to the satisfaction criterion for partial
interpretations, we have to take into account that their truth may be derived
later in the computation and thus if there is any undefined negation-as-failure

85

Input: A grounded abstract program P
Output: A stable model of P (if any).

Procedure Compute Stable(Vn:SetOfLit); (* Recursive Procedure *)
var X,V ′

n, V ′
n+1: SetOfLit;

if PTP(Vn) = ∅ (* V +
n is a model of P *)

then if unfounded free(P, Vn ∪ not (HB(P)− Vn))
then M := V +

n ; output “M is a stable model of P”;
end if

else for X ∈ PTP(Vn) do
V ′

n+1 := Vn ∪X; (* Choose a possibly-true conjunction *)
repeat (* Compute a fixpoint of T P *)

V ′
n := V ′

n+1;
V ′

n+1 := T LP (V ′
n);

until V ′
n+1 = V ′

n or V ′
n+1 ∩ not (V ′

n+1) 6= ∅;
if V ′

n+1 ∩ not (V ′
n+1) = ∅ (* V ′

n+1 is consistent *)
then Compute Stable(V ′

n+1);
end for

end procedure

begin (* Main *)
var I, J : SetOfLit;
I := ∅;
repeat (* Computation of Wω

P(∅) *)
J := I;
I :=WP(I);

until I = J ;
if PTP(I) = ∅ (* WP(I) is the only stable model *)

then J := I+; output “J is the unique stable model of P”;
else Compute Stable(I);

end

Figure 4.2: An algorithm for the computation of Stable Models of Datalognot,∨

programs, originally defined in [LRS97]

86

Function strong violated(P: Program; I:SetOfLiterals) : Boolean
begin

for (∅, B) ∈ P do
if B ⊆ I

then return True;
end;
return False;

end;

Figure 4.3: A function to determine whether a (possibly) partial interpretation
violates some constraints

literal in a strong constraint in a preliminary check, we have to assume that the
constraint is satisfied. In short, only constraints which are definitely violated
may be considered violated.

The function which checks whether a constraint is violated is depicted in
Figure 4.3.

However, when a model has been computed, we have to make sure that the
totalised interpretation (in which all undefined atoms are considered false) does
not violate any strong constraints. We can use the function strong violated
(Figure 4.3) for this purpose too, since the totalised interpretation is considered
which does not contain any undefined literal.

The updated algorithm with the integrated strong constraint checks is shown
in Figure 4.6 on the next page.

4.7 Where Weak Constraints Fit In

Still missing is a feature in the algorithm which admits only those models which
are optimal in the sense of Definition 2.6.24. In this section we give the final
extension of the algorithm which will enable us to compute the preferred models.

4.7.1 Objective Function

When optimising, one usually tries to find an extreme value (minimum or max-
imum) of some objective function. If we can define a function for each model
with respect to some program, which is minimised exactly by its preferred mod-
els, we can implant the computation of this function into our algorithm in order
to single out the preferred models. We recall the criterion for such an objective
function:

Criterion 1 (Requirement for the Objective Function)
We have to find an objective function HP

Mwhich assigns a value to each candidate
model in the context of a particular program P, such that for two candidate
models M1,M2 ∈ SEM(P) the following holds:
If all sums of weights of violated constraints are equal in M1 and M2 in layers
greater than n, and the sum of the weights in layer n in M1 is greater than the
corresponding sum in M2, then HP

M1
> HP

M2
. }

87

Input: An abstract program P
Output: A stable model of P (if any).

Procedure Compute Stable(Vn:SetOfLit); (* Recursive Procedure *)
var X,V ′

n, V ′
n+1: SetOfLit;

if PTP(Vn) = ∅ (* V +
n is a model of P *)

then if (not strong violated(P, Vn ∪ not (HB(P)− Vn)))
∧ unfounded free(P, Vn ∪ not (HB(P)− Vn))
then M := V +

n ; output “M is a stable model of P”;
end if

else for X ∈ PTP(Vn) do
V ′

n+1 := Vn ∪X; (* Choose a possibly-true conjunction *)
repeat (* Compute a fixpoint of T P *)

V ′
n := V ′

n+1;
V ′

n+1 := T LP (V ′
n);

until V ′
n+1 = V ′

n or V ′
n+1 ∩ not (V ′

n+1) 6= ∅;
if V ′

n+1 ∩ not (V ′
n+1) = ∅ (* V ′

n+1 is consistent *)
∧ (not strong violated(P,V ′

n+1))
then Compute Stable(V ′

n+1);
end for

end procedure

begin (* Main *)
var I, J : SetOfLit;
I := ∅;
repeat (* Computation of Wω

P(∅) *)
J := I;
I :=WP(I);

until I = J ;
if PTP(I) = ∅ (* WP(I) is the only stable model *)

then if not strong violated(P, I ∪ not (HB(P)− I))
then J := I+; output “J is the unique stable model of P”;

end if
else Compute Stable(I); end

Figure 4.4: An algorithm for the computation of Stable Models of
Datalognot,∨,s programs, extended from the algorithm in Figure 4.5 on page 86

88

If we then take those models which minimise this function, we get exactly
those models which violate constraints at the lowest possible layer and whose
sum of weights in this lowest layer is minimal, too.

Obviously, this function must incorporate some information about the layers
in which constraints are violated – the higher the layer in which violated con-
straints exist, the higher the function value – and also some information about
the added weights of the violated constraints, but one must be careful that the
weight information does not interfere with the layer information.

So we need some function for the layers, which delivers a higher value for
layer l if one constraint with some tiny weight is violated in it than the value
of the objective function for a scenario in which all constraints of levels lower
than l with enormous weights are violated.

Some problem arises here: The weights may be negative or zero. We there-
fore normalise the weights to be strictly positive in our functions as follows:
Given some numbers in the interval [min,max], we simply add −min + 1, so
that all numbers are positive and in the range [1,max−min + 1].

Definition 4.7.1 (Positivised Weights)
Given a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈
ΠDatalognot,∨,w , the positivised weights are defined as:

w+
C =(wC − wP

min + 1), C ∈ P

wP,+
max =(wP

max − wP
min + 1)

�

Definition 4.7.2
Given a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈
ΠDatalognot,∨,w , we denote the number of (abstract) weak constraints in P as
WCP .

WCP = |Constraintsabstract ∩ P|

�

Using this we can define a penalty function for a layer, as described above.
Of course, this function must interact nicely with our objective function, which
will be defined shortly. In particular, the layer penalty function must be strictly
greater than the objective function of some model and the same program, in
which any number of weak constraints in layers lower than the considered one
are violated.

Definition 4.7.3 (Layer Penalty Function)
Given a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈
ΠDatalognot,∨,w , the layer penalty function is defined as:

fP : Layers(P)→ N

fP(1) = 1

fP(n) = fP(n− 1) ·WCP · wP,+
max + 1, n ∈ Layers(P), n > 1

�

89

Now we define the objective function as the sum of the added weights of
the violated weak constraints of each layer, multiplied by the respective layer
penalty.

Definition 4.7.4 (Objective Function for a Given Model)
Let P be a grounded abstract program P = grounding(abstract(P ′)), P ′ ∈
ΠDatalognot,∨,w , and M one of its candidate models. The objective function
value HP

M is then defined as follows:

HP
M =

lPmax∑

i=1

(fP(i) ·
∑

N∈N
M,P
i

wP,+
N)

�

4.7.2 Preferred Models and Objective Function Minima
Coincide

It is important that this objective function is minimal for the preferred mod-
els of a program but for no other candidate models. We will now prove that
a candidate model is a preferred model iff it is a minimum of the objective
function.

First, we show that the layer penalty function is always strictly greater than
the sum of the objective function up to the preceding layer.

Lemma 4.7.1
Given a program P ∈ ΠDatalognot,∨,w and one of its candidate models M ∈
SEM(P), and let

HP
M (k) =

k∑

i=1

(fP(i) ·
∑

N∈N
M,P
i

wP,+
N)

then

∀0 ≤ k < lPmax : fP(k + 1) > HP
M (k)

holds.

Proof Let k = 0, then fP(1) = 1 and HP
M (0) = 0, since 0 is neutral w.r.t.

the sum, therefore fP(k + 1) > HP
M (k) holds.

90

Let 0 < k < lPmax, then

HP
M (k) =

k∑

i=1

(fP(i) ·
∑

N∈N
M,P
i

wP,+
N) =

= fP(1) ·

≤|clayerP(1)|·wP

max

︷ ︸︸ ︷
∑

N∈N
M,P
1

wP,+
N + · · ·+ fP(k) ·

≤|clayerP(k)|·wP

max

︷ ︸︸ ︷
∑

N∈N
M,P

k

wP,+
N ≤

≤ fP(1) · |clayerP(1)| · wP
max + · · ·+ fP(k) · |clayerP(k)| · wP

max =

= (

≤fP(k)
︷ ︸︸ ︷

fP(1) · |clayerP(1)|+ · · ·+

≤fP(k)
︷ ︸︸ ︷

fP(k) · |clayerP(k)|) · wP
max ≤

≤ (fP(k) · |clayerP(1)|+ · · ·+ fP(k) · |clayerP(k)|) · wP
max =

= fP(k) ·

≤ WCP

︷ ︸︸ ︷

(|clayerP(1)|+ · · ·+ |clayerP(k)|) · wP
max ≤

≤ fP(k) ·WCP · wP
max <

< fP(k) ·WCP · wP
max + 1

= fP(k + 1)

So in total ∀0 ≤ k < lPmax : fP(k + 1) > HP
M (k) holds. 4

We are now in the position to prove the essential theorem:

Theorem 4.7.1
A subset N of candidate models of a program P ∈ ΠDatalognot,∨,w , N ⊆

SEM(P), is the set of preferred models iff N = { min
M∈SEM(P)

HP
M}.

Proof (⇒): Preferred models must minimise the sum of the weights of
violated weak constraints of the greatest layer in the program, i.e., they must
be in PREFSEM (P, lPmax). We will show that for any two candidate models M
and M ′, where M minimises the sum of weak constraints of layer lPmax and M ′

does not, HP
M < HP

M ′ holds – actually we show HP
M ′ −HP

M > 0:
As it can be seen from Definition 2.6.24,

∑

W∈N
M,P

lPmax

wW <
∑

W∈N
M′,P

lPmax

wW

must hold for these two models, since M is minimal and M ′ is not. It can be
easily verified that the above also holds for positivised weights:

∑

W∈N
M,P

lPmax

wP,+
W <

∑

W∈N
M′,P

lPmax

wP,+
W (4.8)

91

HP
M ′ −HP

M = HP
M ′(lPmax − 1) + fP(lPmax) ·

∑

N∈N
M′,P

lPmax

wP,+
N

−HP
M (lPmax − 1)− fP(lPmax) ·

∑

N∈N
M,P

lPmax

wP,+
N

by (4.8) above and since all weights are positive integers,

=

≥0
︷ ︸︸ ︷

HP
M ′(lPmax − 1)−HP

M (lPmax − 1) + fP(lPmax) · k, k ≥ 1

≥ −HP
M (lPmax − 1) + fP(lPmax) > 0

because by virtue of Lemma 4.7.1 fP(lPmax) > HP
M (lPmax−1) holds, and therefore

in total

HP
M ′ −HP

M > 0

We have shown that HP
M is minimal for those models which minimise the

sum of weights of the violated constraints in the greatest layer, i.e., which are
in PREFSEM (P, lPmax). Among those for any layer 1 ≤ i < lPmax the preferred
models must minimise the sum of weights of the violated weak constraints in
layer i, which is the criterion for being in set PREFSEM (P, i). Let again be M
a model which minimises all sums of violated weak constraints in layers greater
or equal than i, and M ′ one which does not minimise the sum of violated weak
constraints in layer i, but all in layers greater than i. Again we show that
HP

M ′ −HP
M > 0 holds:

Again, let us observe that the following holds:

∑

W∈N
M,P
i

wP,+
W <

∑

W∈N
M′,P
i

wP,+
W (4.9)

Also, since M and M ′ both minimise the added weights of violated weak con-
straints in layers greater than i, we have:

lPmax∑

j=i+1

(fP(j) ·
∑

W∈N
M,P
j

wW) =

lPmax∑

j=i+1

(fP(j) ·
∑

W∈N
M′,P
j

wW) (4.10)

We proceed similar to the case of the greatest layer:

HP
M ′ −HP

M = HP
M ′(i− 1) + fP(i) ·

∑

N∈N
M′,P
i

wP,+
N +

lPmax∑

j=i+1

(fP(j) ·
∑

W∈N
M′,P
j

wW)

−HP
M (i− 1)− fP(i) ·

∑

N∈N
M,P
i

wP,+
N −

lPmax∑

j=i+1

(fP(j) ·
∑

W∈N
M,P
j

wW)

92

by (4.10) above

= HP
M ′(i− 1) + fP(i) ·

∑

N∈N
M′,P
i

wP,+
N

−HP
M (i− 1)− fP(i) ·

∑

N∈N
M,P
i

wP,+
N

by (4.9) above and since all weights are integers

=

≥0
︷ ︸︸ ︷

HP
M ′(i− 1)−HP

M (i− 1) + fP(lPmax) · k, k ≥ 1

≥ −HP
M (i− 1) + fP(i) > 0

because by virtue of Lemma 4.7.1 fP(i) > HP
M (i − 1) holds, and therefore in

total

HP
M ′ −HP

M > 0

We have proven the (⇒) direction. (⇐): We have to show that

M ∈ {M1 | H
P
M1

= min
M2∈SEM(P)

HP
M2
} ⇒M ∈ PREFSEM (P)

We start by showing

M ∈ {M1 | H
P
M1

= min
M2∈SEM(P)

HP
M2
} ⇒M ∈ PREFSEM (P, lPmax)

We do this indirectly. So assume M1 ∈ SEM(P) so that

HP
M1

= min
M∈SEM(P)

HP
M

but

∑

W∈N
M1,P

lPmax

wW > min
M∈SEM(P)

∑

W∈N
M,P

lPmax

wW

This means that some M2 ∈ SEM(P) exists, so that

∑

W∈N
M2,P

lPmax

wW = min
M∈SEM(P)

∑

W∈N
M,P

lPmax

wW

We show that HP
M2

< HP
M1

, which is a contradiction to the assumption that

HP
M1

is minimal. Again HP
M1
−HP

M2
> 0 must hold, analogously to the proofs

above.
Next we show

∀1 ≤ i < lPmax : M ∈ {M1 | H
P
M1

= min
M2∈SEM(P)

HP
M2
} ⇒M ∈ PREFSEM (P, i)

93

under the assumption that M ∈ PREFSEM (P, i + 1), which also entails mem-
bership in PREFSEM (P, j), i + 1 < j < lPmax.

As above, we prove by contradiction: So assume M1 ∈ SEM(P) so that

HP
M1

= min
M∈SEM(P)

HP
M

but

∑

W∈N
M1,P

i

wW > min
M∈SEM(P)

∑

W∈N
M,P
i

wW

This means that some M2 ∈ SEM(P) exists, so that

∑

W∈N
M2,P

i

wW = min
M∈SEM(P)

∑

W∈N
M,P
i

wW

Since for M ∈ PREFSEM (P, j), i < j < lPmax

∀i < j < lPmax :
∑

W∈N
M1,P

j

wW = min
M∈SEM(P)

∑

W∈N
M,P
j

wW

holds, we can again show HP
M1
−HP

M2
> 0 analogously to the proofs above, thus

deriving a contradiction to our assumption, and completing the proof for the⇐
direction of Theorem 4.7.1. 4

4.7.3 Extension of the Algorithm to Compute One Pre-
ferred Model

Having proved Theorem 4.7.1, we have a way to decide among all models of
a program whether it is a preferred model. A näıve approach would be to
store each computed model (after the strong constraint check) together with its
objective function value. As we will see later, this would have a very bad impact
on space complexity.

As in the case of strong constraints, we can do better by considering the
weak constraints which are already violated for sure even if the computation
is not complete. Thereby we get a lower bound for the objective function. If
we know that this lower bound is greater than a function value of an already
computed model, we may abandon the current computation. However, if no
model has been computed yet, nothing can be said for sure.

A suitable function for computing a lower bound of HP
M , given a possibly

partial interpretation I+ ⊆ M is shown in Figure 4.5 on the following page.
Note that in the case of a total interpretation (I+ = M in our case) the function
computes the exact value of HP

M .
Different strategies for searching the preferred models in the choice tree are

feasible. We decided to choose a greedy algorithm which computes a first model
(if any) without considering the preliminary objective function values at all,
thus potentially being able to prune the search space effectively.

The search process remains the same until the first model is computed. After
that, only those interpretations are pursued for which the lower bound of the

94

Function compute objective(P: Program; I: SetOfLit) : Integer
var H: Integer;
begin

H := 0;
for (C, l, w) ∈ P do

if C ⊆ I
then H := H + (fP(l) · w);

end;
return H;

end;

Figure 4.5: A function which computes a lower bound of the objective function
for a partial interpretation and the exact value of the objective function for total
interpretations

objective function is less than the objective function value for the most recently
computed model. Clearly, also when a leaf of the computation is reached, we
have to compute the objective function value and look whether it is still smaller
than the optimal value up to this step.

In this way we compute exactly the first model for which the objective func-
tion is minimal, the resulting algorithm is shown in Figure 4.7.3 on the next
page.

Although for many problems the algorithm operates efficiently, this strategy
might not be the best for several types of problems.

In an implementation, one could consider to enable the user to choose among
different search strategies. It is even possible to implement metaheuristics like
tabu search or simulated annealing, which are used successfully to solve optimi-
sation problems mainly in the field of scheduling.

4.7.4 An Example

To show how the algorithm works, let us consider a simple example.

Example 4.7.1
Imagine some humanoid agent, which acts according to the following program
(imagine that the agent has just got up, looked out of the window and realized
that it is sunny without wondering whether it is a weekday or weekend. However,
he1 is aware of several categorical principles of his existence.

1without loss of generality, assume it is a male agent

95

Input: A grounded abstract program P
Output: A preferred model of P (if any).

Procedure Compute Preferred(Vn:SetOfLit;var M : SetOfAt; var minCost: Integer);
var X,V ′

n, V ′
n+1: SetOfLit;

if PTP(Vn) = ∅ (* V +
n is a model of P *)

then if (not strong violated(P, Vn ∪ not (HB(P)− Vn)))
∧ unfounded free(P, Vn ∪ not (HB(P)− Vn))
∧ compute objective(P, Vn ∪ not (HB(P)− Vn)) < minCost;
then M := V +

n ;
minCost := compute objective(P,Vn ∪ not (HB(P)− Vn));
output “M is the preliminary preferred model.”;

end if
else for X ∈ PTP(Vn) do

V ′
n+1 := Vn ∪X; (* Choose a possibly-true conjunction *)

repeat (* Compute a fixpoint of T P *)
V ′

n := V ′
n+1;

V ′
n+1 := T LP (V ′

n);
until V ′

n+1 = V ′
n or V ′

n+1 ∩ not (V ′
n+1) 6= ∅;

if V ′
n+1 ∩ not (V ′

n+1) = ∅ (* V ′
n+1 is consistent *)

∧ (not strong violated(P,V ′
n+1))

∧ compute objective(P,V ′
n+1) < minCost

then Compute Preferred(V ′
n+1,M,minCost);

end for
end procedure

begin (* Main *)
var I, J : SetOfLit; M : SetOfAt; minCost: Integer;
I := ∅; minCost := +∞;
repeat (* Computation of Wω

P(∅) *)
J := I;
I :=WP(I);

until I = J ;
if PTP(I) = ∅ (* WP(I) is the only stable model *)

then if not strong violated(P, I ∪ not (HB(P)− I))
then M := I+;

minCost := compute objective(P, M ∪ not (HB(P)−M));
end if

else Compute Preferred(I,M ,minCost);
if minCost 6= +∞

then output “M is one of the preferred stable models of P.”;
else output “P does not have any stable models.”;

end

Figure 4.6: An algorithm for the computation of Preferred Stable Models of
Datalognot,∨,w programs, extended from the algorithm in Figure 4.6 on page 88

96

P ′ = {work ∨ leisure ← not sleep.,

earn money ← work.,

amusement ← leisure.,

sunny.,

⇐ not weekend, amusement.[2 : 3],

⇐ sunny,work.[2 : 1],

⇐ not amusement.[1 : 2]}

This means that if there is no evidence that he sleeps, he works or has leisure.
If he works, he earns money. If he has leisure, he has amusement. We know
that it is sunny.

Then he has several preferences: The agent is very rigorous and therefore
unless he is sure that it is weekend he does not need any amusement. This is very
important to him. On the equal level of importance but somewhat less strict is
the preference that working while it is sunny is not a good idea. Finally, on a
lower level of importance he believes that having no amusement is not good.

Will the agent decide to go to work or to stay at home (without further
thinking)?

The grounded abstract program is:

P = grounding(abstract(P ′)) = {({work, leisure}, {not sleep}),

({earn money}, {work}),

({amusement}, {leisure}),

({sunny}, ∅),

({not weekend, amusement}, 2, 3),

({sunny,work}, 2, 1),

({not amusement}, 1, 2)}

Next we show the Herbrand Base and the values of the layer penalty function.
Also note that all weights are positive and the smallest weight is 1, so the
positivised weights are identical to the original weights.

HB(P) = {work, leisure, sleep, earn money, amusement, sunny,weekend}

wP
max = 3

Layers(P) = {1, 2}

WCP = 3

fP(1) = 1

fP(2) = 1 · 3 · 3 = 9

We will now analyse the computation of one preferred model:
We start by computing Wω

P(∅).

97

WP(∅) = TP(∅) ∪ not (GUSP(∅))

TP(∅) = {sunny}

GUSP(∅) = HB(P)− φλ

φ0 = ∅

φ1 = Φ∅,P(∅) = {sunny,work, leisure}

φ2 = φ1 ∪ Φ∅,P(φ1)

Φ∅,P(φ1) = {earn money, amusement}

φ2 = {sunny,work, leisure, earn money, amusement}

φ3 = φ2 ∪ Φ∅,P(φ2) = φ2 = φλ

HB(P)− φλ = {sleep, weekend}

not (GUSP(∅)) = {not sleep, not weekend}

WP(∅) = {sunny, not sleep, not weekend}

This is what we get in the first step. It can be verified that this is also a fix-
point, since TP(WP(∅)) = {sunny} and neither work nor leisure can be derived,
although the prerequisite not sleep is in WP(∅), because neither not leisure
nor not work is in WP(∅). The greatest unfounded set stays the same. So we
have Wω

P(∅) = {sunny, not sleep, not weekend}.
We have finished the first repeat . . . until loop, and now determine

PTP({sunny, not sleep, not weekend}) =

= {{work, not sleep}, {leisure, not sleep}} 6= ∅

So Compute Preferred({sunny, not sleep, not weekend},∅,+∞) is called.
There is again the test whether the possibly-true conjunctions are empty, which
fails again, so we come to choose a possibly-true conjunction.

First, choose {work, not sleep}, so the new interpretation is {sunny, work,
not sleep, not weekend}.

We now compute the fixpoint of T P for it:

T P({sunny,work, not sleep, not weekend}) =

{sunny,work, earn money, not sleep, not weekend}

T P({sunny,work, earn money, not sleep, not weekend}) =

{sunny,work, earn money, not sleep, not weekend}

We have reached a fixpoint. The consistency test and the strong constraint
check are successful (after all, there are no strong constraints in our program),
and compute objective(P,{sunny,work,earn money,not sleep, not weekend}) re-
turns 9, since (2, 1, sunny,work) is violated. This is of course less than +∞ (we
have not computed any model yet), so we may proceed calling

Compute Preferred({sunny,work, earn money, not sleep, not weekend}, ∅,+∞)

98

Note that if (2, 1, sunny,work) was a strong constraint, the computation of
this branch would have been stopped here.

In the recursive step,

PTP({sunny,work, earn money, not sleep, not weekend}) = ∅

holds, so we have to check unfounded-freeness, which succeeds (we do not go
into detail here). The strong constraint check succeeds trivially and

compute objective(P,{sunny,work, earn money, not sleep, not weekend}

∪ {not leisure, not amusement}) = 11

since (2, 1, sunny,work) and (1, 2, not amusement) are violated. Clearly 11 <
+∞ holds, so M := {sunny, work, earn money} and minCost := 11 are set.
Note that these are variable parameters, so the changes also affect the variables
in the procedures which called this instance.

The procedure terminates, and we get back one level into the for loop. Re-
member that our interpretation before the choice of the possibly-true conjunc-
tion was {sunny, not sleep, not weekend}. We now choose the other possibly-
true conjunction, {leisure, not sleep}, yielding the new interpretation {sunny,
leisure, not sleep, not weekend}.

Again, we compute the fixpoint of T P for this interpretation:

T P({sunny, leisure, not sleep, not weekend}) =

{sunny, leisure, amusement, not sleep, not weekend}

T P({sunny, leisure, amusement, not sleep, not weekend}) =

{sunny, leisure, amusement, not sleep, not weekend}

A fixpoint is reached. Now the consistency and strong constraint checks
succeed again, and

compute objective(P, {sunny, leisure, amusement, not sleep, not weekend})

= 27

since (2, 3, not weekend, amusement) is violated. But since the value of minCost
is 11 (it was a var parameter of the recursive call), the condition

compute objective(P, {sunny, leisure, amusement, not sleep, not weekend})

< minCost

is not satisfied, so if a stable model exists, which contains {sunny, leisure,
amusement, not sleep, not weekend} (indeed there is one, as can be verified),
it cannot be among the preferred ones. The computation of this branch is
therefore not continued, we get back to the for loop, but there are no possibly-
true conjunctions left, so the procedure terminates and we are again in the main
function, output the preferred model and terminate.

The answer to the question of what the agent will do is therefore that he
will decide to go to work. However, if he later looks on the calendar and realises
that weekend. holds, he will come to a different conclusion. �

99

4.7.5 Complexity of the Algorithm

We follow the considerations in [LRS97] concerning data complexity, i.e., the
complexity of the computation w.r.t. the size of the database (essentially |HB(P)|).

By Proposition 5.12 in [LRS97] Wω
P(∅)(P) can be computed in polyno-

mial time. Also the computation of a fixpoint for T P and the evaluation of
PTP can be done in polynomial time. The functions strong violated and com-
pute objective are also clearly computable in polynomial time.

Now, the procedure Compute Preferred generates all computations for P.
As described above, this generation process can be seen as a tree, in which
Wω

P(∅) is the root node and each node has as many successors as possibly-true
conjunctions exist. Every path in this tree represents a computation up to its
limit. Each path is linear in |HB(P)|, and so the limit of a computation is
reached in polynomial time.

The computationally expensive part is the check for unfounded-freeness,
performed at every limit of a computation, which is reached. This function
executes in at most single exponential time and polynomial space, as argued in
[LRS97]. As a consequence, each computation of P is accomplished in single
exponential time and polynomial space.

Now, the number of computations is also single exponential, so in the worst
case the algorithm executes in single exponential time. Also since the procedure
stack contains at most a polynomial number of entries, each comprised of an
interpretation, a model, and a number, the execution of the algorithm is done
using at most polynomial space.

Note that if we kept all models which minimise the objective function up to
some step in the computation, the number of models would be exponential in
the worst case (if all possible models are preferred), and the algorithm would
use exponential space!

However, for several important classes of programs, the algorithm always
terminates in polynomial time, as shown in [LRS97].

4.7.6 Computing all Preferred Stable Models

The algorithm which we presented computes one of the preferred models, but
in general there may be several preferred models. In certain environments it
may be sufficient to compute one preferred model, but in others it would be
important to compute all.

As described in Section 4.7.5, the näıve approach of keeping all models which
are so far preferred, raises the complexity of the algorithm considerably.

However, there is a way to get around this. Instead of doing output “M is
one of the preferred stable models of P.” after the computation of one preferred
model, we could respawn a similar computation, now with the optimal objective
function value already known. A procedure which accomplishes this is shown
in Figure 4.7 on the following page.

Compute Preferred1 is very similar to Compute Preferred. The differences
are that minCost need not be a var parameter, since it is fixed, that we need
only test for equality if a limit of a computation is reached, and that we have
to test the lower bound of the objective function for ≤ minCost rather than
< minCost during a computation because we want to compute all models having

100

Procedure Compute Preferred1(Vn:SetOfLit; minCost: Integer);
var X,V ′

n, V ′
n+1: SetOfLit;

if PTP(Vn) = ∅ (* V +
n is a model of P *)

then if (not strong violated(P, Vn ∪ not (HB(P)− Vn)))
∧ unfounded free(P, Vn ∪ not (HB(P)− Vn))
∧ compute objective(P, Vn ∪ not (HB(P)− Vn)) = minCost;
then output “M is a preferred model.”;

end if
else for X ∈ PTP(Vn) do

V ′
n+1 := Vn ∪X; (* Choose a possibly-true conjunction *)

repeat (* Compute a fixpoint of T P *)
V ′

n := V ′
n+1;

V ′
n+1 := T LP (V ′

n);
until V ′

n+1 = V ′
n or V ′

n+1 ∩ not (V ′
n+1) 6= ∅;

if V ′
n+1 ∩ not (V ′

n+1) = ∅ (* V ′
n+1 is consistent *)

∧ (not strong violated(P,V ′
n+1))

∧ compute objective(P,V ′
n+1) ≤ minCost

then Compute Preferred1(V ′
n+1,minCost);

end for
end procedure

Figure 4.7: A procedure which computes all preferred models, once the minimal
cost value is known

this objective function value. Also we output preferred models and not only
currently best models.

The complexity of the algorithm stays within polynomial space and single
exponential time in this case since we just double the computation time in the
worst case, whereas the space requirement does not increase.

101

Chapter 5

Architecture/System
Description

The algorithm we described is going to be integrated into an existing experimen-
tal system, developed at Institut für Informationssysteme, Abteilung für Daten-
banken und Expertensysteme at Technische Universität Wien, in the course of
an ongoing project sponsored by FWF.

The system, called dlv, is based on the algorithm described in [LRS97], with
several additional optimisations [ELM+97a, ELM+97b, ELM+97c, ELM+98,
CEF+97].

5.1 Interface

The interface to the system is basically command-line oriented. In addition a
Graphical User Interface (GUI) has been implemented, with which all relevant
functions of the various frontends (see below) can be controlled.

5.2 Frontends

5.2.1 Native Extended Datalog

This is the heart of the system. It can parse programs of ΠDatalog¬,not,∨,s and
compute their consistent answer sets, resp. stable models and is used by all other
frontends, as indicated by Figure 5.1 on the next page. Most other frontends
implement a translation from some language to Datalog¬,not,∨,s. If explicitly
negated atoms occur, they are transformed as described in Section 2.6.6.

This part of the system has already been updated to parse programs of
ΠDatalog¬,not,∨,w . So in the future, further frontends which enable the user
to specify optimisation problems and translate these problems into a suitable
Datalog¬,not,∨,w program are feasible.

5.2.2 Diagnosis

This frontend currently supports several versions of LPAPs. It is an ideal can-
didate to be extended to handle those types of abduction which are described

102

... Modules which could be extended

... Modules which need to be updated

Rules and GraphsIntelligent

Ground
Program

Dependency
Graphs

Model Generator

Model Checker

Access

EDB

File System

EDB

Oracle

EDB

Query Processor

Extended DLP SQL3Translator Translator

Command - line

GUI

Reasoning
Cautious

Reasoning

Grounding

Brave

Handler

Abductive Diagnosis

Reiter’s Diagnosis

Minimum Cardinality
Prioritized Abduction
Penalized Abduction

Figure 5.1: Structure of the dlv system

103

in Section 3.1.

5.2.3 SQL3

This frontend translates a subset of SQL3 statements into Datalognot,∨, most
notably those constructs which enable the user to express recursive queries.
However, the SQL3 standard is not official yet, and our system is probably the
first one which can actually handle this type of queries.

Currently we do not see any potential gain for this frontend by the addition
of weak constraints.

5.2.4 Brave and Cautious Reasoning

This is a way to actually pose queries to datalog programs. In the case of
the native datalog frontend, models are computed – here we ask whether some
specific literal, or conjunction, in general, is true in at least one model (Brave
Reasoning), or in all models (Cautious Reasoning).

The extension of these reasoning concepts to preferred models is straightfor-
ward and has not been marked explicitly in Figure 5.1 on the preceding page.

5.3 Query Processor, Grounding, and Handling
of Rules

The Query Processor is the module which coordinates the computations and
states of the various low-level modules. It is going to be updated to be able to
deal with Datalog¬,not,∨,w programs. This update is very straightforward and
thus not indicated in Figure 5.1 on the page before.

The system has an Intelligent Grounding Module, which reduces the size
of the program to be considered by the other modules considerably during the
grounding phase. Actually, this module is able to compute the stable models of
some easy classes of programs.

Of course, also weak constraints have to be grounded. We will even extend
the language of Datalog¬,not,∨,w by allowing the specification of layers and
weights to be variable in the programs rather than fixed numbers as in this
thesis, which must be handled accordingly by the grounding phase. In this
light, the Intelligent Grounding will need a more sophisticated update.

The Rule Handler has to be adapted to incorporate the handling of Weak
Constraints, but again this change is immediate.

5.4 Model Generator and Checker

These two modules correspond to the algorithm presented in [LRS97] and in this
thesis. By Model Generator we refer to the generation of the computations (as in
Definition 4.5.1), whereas by Model Checker we mean the check for unfounded-
freeness.

As we have seen in Chapter 4, only the Model Generator is affected by the
extension to weak constraints. The model checks do not have to be altered.

104

Chapter 6

Research Issues

An interesting question is on which classes of programs the algorithm described
in this thesis terminates in polynomial time. It is known (cf. [LRS97]) that the
class of head-cycle-free programs is one of these. Another class which exhibits
this property is the class of choice programs. These are programs, where a
special goal enforces some functional dependencies, thus effectively making a
choice. In [SZ90] a translation from such programs to Datalog under the
Stable Model Semantics has been presented. Actually, the unstratified program
for the Minimum Spanning Tree problem in Figure 3.16 on page 70 can be
viewed as a choice program which has been transformed to Datalog using the
approach cited above.

Disjunction-free programs with even unstratified negation (that is, the de-
pendency graph, in which positive and negative dependencies are represented,
contains only cycles with an even number of negative edges) are known to be
solvable in polynomial time, however we cannot guarantee that the presented
algorithm is also within this time bound for these programs.

Concerning the extension by weak constraints defined in this thesis, we are
particularly interested in programs for which one preferred model can be found
in polynomial time by our algorithm.

Other issues include finding optimisations for the computation. In particular
an approach similar to the partitioning into components could be promising.
We might try to partition the weak constraints of a program according to the
priority layers of their literals in order to be able to compute a preferred model
sooner.

Also different search strategies should be evaluated, as there are lots of ap-
proaches in the literature most of which are very problem-specific. The challenge
here is to generalise these concepts from these domains to a versatile system like
dlv without losing their advantages.

105

List of Figures

2.1 Extreme Case of Weak Constraint Violations 39

3.1 Example Network Topology . 46
3.2 Representation of the network shown in Figure 3.1 on page 46 . . 46
3.3 Theory for network diagnosis problems 46
3.4 The Datalog¬,not,∨,w program which solves the minimum car-

dinality abduction problem 〈Hypnet, Obsnet, LPnet〉 47
3.5 The Datalog¬,not,∨,w program which solves the priority minimal

abduction problem 〈Hypnet, Obsnet, LPnet〉 under prioritisation
H1 = {broken(c2), broken(c3)}, H2 = {broken(c1), broken(c4)} 48

3.6 The Datalog¬,not,∨,w program which solves the penalisation-
based abduction problem 〈Hypnet, Obsnet, LPnet〉 under the penal-
ties defined in the text . 49

3.7 The Datalog¬,not,∨,w program which solves the penalisation-
based abduction problem 〈Hypnet, Obsnet, LPnet〉 under the penal-
ties defined in the text . 50

3.8 The program for TTP1 . 53
3.9 The program for TTP1 . 54
3.10 Example graph G . 63
3.11 All spanning trees of G in Figure 3.10 on page 63 63
3.12 A constraint solution for Minimum Spanning Tree 67
3.13 Undirected and Directed Example Graph G 68
3.14 A Spanning Tree of G (as in Figure 3.13 on page 68) 68

3.15
−→
Td, arcs in

−→
G , but not in

−→
Td are dotted 68

3.16 A solution using unstratified negation for Minimum Spanning

Tree . 70
3.17 Weakly Connected Graphs With and Without Spanning Trees . . 71
3.18 A solution for Directed Minimum Spanning Tree 73
3.19 A constraint solution for Minimum Steiner Tree 74

4.1 A function which checks unfounded-freeness of I given a program
P, originally defined in [LRS97] 80

4.2 An algorithm for the computation of Stable Models of Datalognot,∨

programs, originally defined in [LRS97] 86
4.3 A function to determine whether a (possibly) partial interpreta-

tion violates some constraints . 87
4.4 An algorithm for the computation of Stable Models of Datalognot,∨,s

programs, extended from the algorithm in Figure 4.5 on page 86 88

106

4.5 A function which computes a lower bound of the objective func-
tion for a partial interpretation and the exact value of the objec-
tive function for total interpretations 95

4.6 An algorithm for the computation of Preferred Stable Models
of Datalognot,∨,w programs, extended from the algorithm in
Figure 4.6 on page 88 . 96

4.7 A procedure which computes all preferred models, once the min-
imal cost value is known . 101

5.1 Structure of the dlv system . 103

107

Bibliography

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[Bar96] Victor A. Bardadym. Computer-aided school and university
timetabling: The new wave. In Burke and Ross [BR96], pages
22–45.

[BD95] Stefan Brass and Jürgen Dix. Characterizations of the disjunc-
tive stable semantics by partial evaluation. In V. W. Marek,
A. Nerode, and M. Truszczyński, editors, Logic Programming and
Non-Monotonic Reasoning, Proceedings of the Third International
Conference, number 928 in LNAI. Springer, June 1995.

[BD97] Stefan Brass and Jürgen Dix. Characterizations of the disjunctive
stable semantics by partial evaluation. Journal of Logic Program-
ming, 32(3):207–228, 1997. Extended Abstract appeared as [BD95].

[BF91a] Nicole Bidoit and Christine Froidevaux. General logical databases
and programs: Default logic semantics and stratification. Informa-
tion and Computation, 91:15–54, 1991.

[BF91b] Nicole Bidoit and Christine Froidevaux. Negation by default and
unstratifiable logic programs. Theoretical Computer Science, 78:85–
112, 1991.

[BG94] C. Baral and M. Gelfond. Logic Programming and Knowledge Rep-
resentation. Journal of Logic Programming, 19/20:73–148, 1994.

[BLR97a] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Adding
Weak Constraints to Disjunctive Datalog. In Proceedings of
the 1997 Joint Conference on Declarative Programming APPIA-
GULP-PRODE’97, Grado, Italy, June 1997.

[BLR97b] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong
and Weak Constraints in Disjunctive Datalog. In Proceedings of
the 4th International Conference on Logic Programming and Non-
Monotonic Reasoning (LPNMR ’97), Dagstuhl, Germany, July
1997.

[BLR98] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhanc-
ing Disjunctive Datalog by Constraints. 1998. Submitted to IEEE
Transactions on Knowledge and Data Engineering.

108

[Bök82] Dieter Bökemann. Theorie der Raumplanung. Oldenbourg Verlag,
München, 1982.

[BR96] Edmund Burke and Peter Ross, editors. Practice and Theory of Au-
tomated Timetabling, First International Conference 1995, number
1153 in LNCS. Springer, 1996.

[CDM98] Alberto Colorni, Marco Dorigo, and Vittorio Maniezzo. Meta-
heuristics for high school timetabling. Computational Optimization
and Applications, 9(3):275–298, 1998.

[CEF+97] Simona Citrigno, Thomas Eiter, Wolfgang Faber, Georg Gottlob,
Christoph Koch, Nicola Leone, Cristinel Mateis, Gerald Pfeifer,
and Francesco Scarcello. The dlv System: Model Generator and
Application Frontends. In Proceedings of the 12th Workshop on
Logic Programming (WLP ’97), Research Report PMS-FB10, pages
128–137, München, Germany, September 1997. LMU München.

[CGT90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and
Databases. Springer, 1990.

[Chr75] Nicos Christofides. Graph Theory An Algorithmic Approach. Aca-
demic Press, Inc., 1975.

[CK96] Tim B. Cooper and Jeffrey H. Kingston. The complexity of
timetable construction problems. In Burke and Ross [BR96], pages
283–295.

[Dix95] J. Dix. Semantics of Logic Programs: Their Intuitions and Formal
Properties. An Overview. In Logic, Action and Information. Proc.
of the Konstanz Colloquium in Logic and Information (LogIn’92),
pages 241–329. DeGruyter, 1995.

[EG95] Thomas Eiter and Georg Gottlob. The Complexity of Logic-Based
Abduction. Journal of the ACM, 42(1):3–42, January 1995.

[EGL97] Thomas Eiter, Georg Gottlob, and Nicola Leone. Abduction From
Logic Programs: Semantics and Complexity. Theoretical Computer
Science, 189(1–2):129–177, December 1997.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive
Datalog. ACM Transactions on Database Systems, 22(3):315–363,
September 1997.

[ELM+97a] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. A Deductive System for Nonmonotonic Rea-
soning. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors,
Proceedings of the 4th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR ’97), number 1265
in Lecture Notes in AI (LNAI), Berlin, 1997. Springer.

[ELM+97b] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. The Architecture of a Disjunctive Deductive
Database System. In Proceedings Joint Conference on Declarative

109

Programming (APP IA-GULP-PRODE ’97), pages 141–151, June
1997.

[ELM+97c] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. Projektbericht: Ein Nichtmonotones Disjunk-
tives Datenbanksystem. ÖGAI Journal (J. of the Austrian Society
for AI), 16(2):6–11, 1997. In German. English Title: Project Re-
port: A Nonmonotonic Disjunctive Deductive Database System.

[ELM+98] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. The KR System dlv: Progress Report, Com-
parisons and Benchmarks. In Proceedings Sixth International Con-
ference on Principles of Knowledge Representation and Reasoning
(KR’98), 1998. Forthcoming.

[GL88] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic
Programming. In Logic Programming: Proceedings Fifth Intl Con-
ference and Symposium, pages 1070–1080, Cambridge, Mass., 1988.
MIT Press.

[GL91] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs
and Disjunctive Databases. New Generation Computing, 9:365–
385, 1991.

[KKT93] A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive Logic Pro-
gramming. Journal of Logic and Computation, 1993.

[Llo84] J.W. Lloyd. Foundations of Logic Programming. Springer, Berlin,
1984.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer, Berlin,
1987. second edition.

[LMR92] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of
Disjunctive Logic Programming. The MIT Press, Cambridge, Mas-
sachusetts, 1992.

[LRS97] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive
stable models: Unfounded sets, fixpoint semantics and computa-
tion. Information and Computation, 135(2):69–112, June 1997.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[Pfe96] Gerald Pfeifer. Disjunctive Datalog — An Implementation by Res-
olution. Master’s thesis, Institut für Informationssysteme, Technis-
che Universität Wien, 1996.

[Prz90] Teodor C. Przymusinski. Well-founded Semantics Coincides with
Three-valued Stable Semantics. Fundamenta Informaticae, 13:445–
464, 1990.

[Prz91] Teodor C. Przymusinski. Stable Semantics for Disjunctive Pro-
grams. New Generation Computing, 9:401–424, 1991.

110

[Prz95] T. Przymusinski. Static Semantics for Normal and Disjunctive
Logic Programs. Annals of Mathematics and Artificial Intelligence,
14:323–357, 1995.

[Ros90] K.A. Ross. The Well Founded Semantics for Disjunctive Logic Pro-
grams. In W. Kim, J.-M. Nicolas, and S. Nishio, editors, Deduc-
tive and Object-Oriented Databases, pages 385–402. Elsevier Sci-
ence Publishers B. V., 1990.

[Sch95] A. Schaerf. A survey of automated timetabling. Technical Report
CS-R9567 1995, Computer Science/Department of Software Tech-
nology, Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands, 1995.

[Sed88] Robert Sedgewick. Algorithms. Addison-Wesley, 1988. second edi-
tion.

[Smu78] Raymond Smullyan. What Is the Name of This Book? Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, USA, 1978.

[SZ90] Domenico Saccà and Carlo Zaniolo. Stable models and non-
determinism in logic programs with negation, 1990.

[Ull89] J. D. Ullman. Principles of Database and Knowledge Base Systems,
volume 1. Computer Science Press, 1989.

[vRS91] A. van Gelder, K.A. Ross, and J.S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM,
38(3):620–650, 1991.

111

