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Abstract

During the last years, much research has been done concerning semantics and complexity of Disjunc-
tive Deductive Databases (DDDBs). While DDDBs — function-free disjunctive logic programs with
negation in rule bodies allowed — are now generally considered a powerful tool for common-sense
reasoning and knowledge representation, there has been a shortage of actual (let alone efficient)
implementations ([ST94, ADN97]).
This paper presents a brief overview of the architecture of the dlv (datalog with disjunction) system
system currently developed at TU Wien in the FWF project P11580-MAT “A Query System for
Disjunctive Deductive Databases”, especially focusing on the Model Generator – the “heart” of the
dlv system – and the integrated frontends for diagnostic reasoning and SQL3.

Keywords: Deductive Databases Systems, Disjunctive Logic Programming, Non-Monotonic Rea-
soning, Implementation.

1 System Overview

An outline of the general architecture of our system is depicted in Figure 1. The internal language
of our system is an extension of disjunctive datalog in the direction of [BLR97], which also allows for
integrity constraints. The kernel is an efficient engine for computing all or some stable models of a
program. Various frontends, i.e. translators for specific applications into the internal language, are
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Figure 1: The System Architecture of dlv

currently developed on top of the kernel, some of which will be described in the second half of this
paper.

At the heart of the system lies the Query Processor. It controls the execution of the entire system
and – in collaboration with the integrated frontends – it performs some pre-processing on the input and
post-processing on the generated models, respectively.

Upon startup, the Query Processor reads the – possibly non-ground – input program and hands it over
to the Rules and Graphs Handler, which splits it into subprograms. Together with relational database
tables, provided by an Oracle database or ASCII text files, the subprograms are then submitted to the
Intelligent Grounding Module, which efficiently generates a subset of the grounded input program that
has exactly the same stable models as the full program, but is much smaller in general.

The Query Processor then again invokes the Rules and Graphs Handler, which generates two par-
titionings of the ground(ed) program. They are used by the Model Generator (MG) and the Model
Checker, respectively, and enable a modular evaluation of the program. This often yields a tremendous
speedup.

Finally, the Model Generator is started. It generates one candidate for a stable model and invokes
the Model Checker to verify whether it is indeed a stable model. Upon success, control is returned to
the Query Processor, which performs post-processing and possibly invokes the MG to look for further
models.

More details on the Intelligent Grounding and the Model Checker can be found in [LRS97, ELM+97].

2 Basic Definitions

For a background and unexplained concepts, see [Min94, LRS97]. A datalog∨,¬ rule r is a clause of the
form

h1 ∨ · · · ∨ hn ← b1, · · · , bk,¬bk+1, · · · ,¬bk+m, n ≥ 1, k,m ≥ 0
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where h1, · · · , hn, b1, · · · , bk+m are function-free atoms. We denote by H(r) (resp. B+(r), B−(r)) the
set of head atoms (resp. positive body literals, negative body literals) of r; furthermore, ¬.B−(r) =
{bi | ¬bi ∈ B−(r)}. If n = 1, then r is normal (i.e., ∨-free); if m = 0, then r is positive (or ¬-free).
A disjunctive datalog program P, denoted by datalog∨,¬ and also called disjunctive deductive database
(DDDB), is a finite set of rules; it is normal (resp. positive) if all its rules are normal (resp. positive).
We assume that rules are safe, i.e., each variable occurring in a rule also has to occur in a positive body
literal of that rule.

An integrity constraint, also called (strong) constraint is a clause of the form← L1, · · · , Lk, where Li,
1 ≤ i ≤ k, is a literal (i.e., it is a rule with an empty head).

We define a datalog∨,¬,c program (simply “program”) as a tuple P = 〈LP, S〉, where LP is a datalog∨,¬

program and S a (possibly empty) set of integrity constraints.

The extensional database (EDB) of a DDDB contains all rules of the form a← (i.e., non-disjunctive
rules with an empty body), and the intensional database (IDB) contains all remaining rules. A predicate
that appears in the head of an EDB (resp. IDB) rule is an EDB (resp. IDB) predicate; each predicate
is assumed to be either an EDB predicate or an IDB predicate, but not both.

We denote by UP , BLP , and ground(P) the Herbrand universe, Herbrand base, and the ground
instantiation of P, respectively. Total (Herbrand) interpretations I and models of P are defined as
usual. (During the computation we deal with three-valued interpretations, represented by sets of ground
literals. The stable models returned at the end of the computation are total.)

3 Model Generator

Basically, the MG works as follows: Derive what is definitely derivable, then make an “educated” guess
for one of those literals which have not been decided yet. This process is recursively applied until
no further guess can be made. At that point, we have a stable model candidate and a call to the
Model Checker takes place; if the candidate is not stable (or inconsistency arises at any time during
the computation), backtracking is performed. To prune the search space – and to avoid the generation
of duplicate models – we make heavy use of the knowledge obtained from previous computations, both
failed and successful ones.

To formalize what we have called “educated guess” before, we introduce the concept of a possibly-true
literal:

Definition 3.1 Let I be a (possibly partial) interpretation for P.

A positive possibly-true literal of P w.r.t. I is a positive literal a, undefined w.r.t. I, such that there
exists a rule r ∈ ground(P) for which all the following conditions hold:

1. a ∈ H(r);

2. H(r) ∩ I = ∅ (that is, the head is not true w.r.t. I);

3. B(r) ⊆ I (that is, the body is true w.r.t. I).

A negative possibly-true literal of P w.r.t. I is a negative literal ¬b ∈ ¬.BLP , undefined w.r.t. I, such
that there exists a rule r ∈ ground(P) for which all the following conditions hold:

1. ¬b ∈ B−(r);

2. H(r) ∩ I = ∅ (that is, the head is not true w.r.t. I);

3. B+(r) ⊆ I (that is, every positive literal of the body is true w.r.t. I);
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4. B−(r) ∩ ¬.I = ∅ (that is, no negative literal of the body is false w.r.t. I).

The set of all (positive and negative) possibly-true literals of P w.r.t. I is denoted by PTLP (I). 2

Example 1 Consider the program LP = {a ∨ b ← c,¬d; e ← c,¬f} and let I = {c,¬d} be an
interpretation for LP . Then, we have three possibly-true literals of LP w.r.t. I: a, b and ¬f . 2

The actual algorithm for computing stable models (sans the Model Checker) is shown in Figure 2.
There we use the following additional notation:

• Given a set X of literals, X+ denotes the set of positive literals occurring in X, and ¬.X is the
set containing the negation of the literals in X (the negation of a is ¬a and vice versa).

• TLP denotes the (skeptical version of the) immediate consequence operator:

TLP : 2BLP ∪¬.BLP → 2BLP

TLP (I) = {a ∈ BLP | ∃r ∈ ground(LP ) s.t. a ∈ H(r), H(r)− {a} ⊆ ¬.I, and B(r) ⊆ I}

• ΦLP denotes an extension of Fitting’s operator to the disjunctive case that computes the false
atoms of a program with respect to an interpretation I.

ΦLP : 2BLP ∪¬.BLP → 2BLP

ΦLP (I) = {a ∈ BLP | ∀r ∈ ground(LP ) with a ∈ H(r) : B(r) ∩ ¬.I 6= ∅ or H(r)− {a} ∩ I 6= ∅}

• WLP [LRS95, LRS97] is the extension of the well-founded operator to the disjunctive case:

WLP : ILP → 2BLP ∪¬.BLP ; WLP (I) = TLP (I)∪¬.GUS∨

LP (I)

where GUS∨
LP (I) is the greatest unfounded set for LP w.r.t. I and ILP is the set of interpretations

having the greatest unfounded set [LRS95, LRS97].

• unfounded-free (see [LRS97]) is a function that, given a disjunctive program LP and a (total) model
I of LP , returns true iff I contains no unfounded set; this condition is equivalent to checking that
I is a stable model [LRS95, LRS97]

4 The native dlv interface

A datalog∨,¬ rule is represented by

h1 v . . . v hn :- b1,. . ., bk, not bk+1,. . ., not bk+m.

where an atom is represented by
a(t1,...,to)

a being the name of that particular atom. Recall that h1, . . . , hn, b1, . . . , bk+m are atoms, while each
ti (1 ≤ i ≤ o) is either a constant or a variable.

The name of an atom is a finite string starting with a letter (A–Z, a–z) followed by a possibly empty
string of alphanumeric characters (A–Z, a–z and 0–9) and underscores ( ). Variables (resp. constants)
are represented by a finite string starting with an uppercase letter (A–Z) (resp. lowercase letter (a–z))
followed by a possibly empty string of alphanumeric characters and underscores.

Each rule can easily span multiple input lines. The operator not is case insensitive and may be also
written as non, which is case insensitive as well.
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Algorithm ComputeStableModels

Input: A datalog program LP and a set S of strong constraints.
Output: The stable models of LP that satisfy all strong constraints in S (if any).

Procedure Compute Stable(I ′ : SetOfLiterals;S′ : SetofConstraints);
(* The procedure outputs all stable models of LP that satisfy S ′ and contain I ′ *)
var J, J ′, Q: SetOfLiterals; L: Literal;

if PTLP (I ′) = ∅ then (* I ′+ is a model of LP *)
if unfounded-free(LP , I ′+) ∧ satisfied(S′, I ′+) then

output I ′+; (* I ′+ is a stable model *)
end if

else

Q := PTLP (I ′)
while Q 6= ∅ do

Take a literal L from Q;
J := I ′ ∪ {L}; (* Assume the truth of a possibly-true literal *)
repeat

J ′ := J ;
J := J ′ ∪ TLP (J ′) ∪ ¬.ΦLP (J ′);

until J = J ′ or J ∩ ¬.J 6= ∅;
if J ∩ ¬.J = ∅ then (* J is consistent *)

Compute Stable(J, S′)
end if

(* At this point all stable models containing I ′ ∪ {L} have been generated *)
Q := Q− {L}
if L is a positive literal then

I ′ := I ′ ∪ {¬L} (* Assume that L is false in following computations *)
else

S′ := S′ ∪ {← L} (* Forbid the generation of L in following computations *)
end if

end while

end if

end procedure

var I, J : SetOfLiterals;
begin (* Main *)

I := ∅;
repeat (* Computation of Wω

LP (∅) *)
J := I;
I :=WLP (I);

until I = J ;
if PTLP (I) = ∅ then (* I+ is the unique stable model of LP *)

if satisfied(S, I+) then

output I+;
end if

else

Compute Stable(I, S);
end if

end

Figure 2: Algorithm for the Computation of Stable Models of datalog∨,¬,c programs
5



5 Brave and Cautious Reasoning

The frontend for brave and cautious reasoning is an extension of the native interface described above.
In addition to the program one can also specify a query, which is essentially the body of a rule followed
by a question mark:

b1,. . ., bm, not bm+1,. . ., not bn ?

where each bi (1 ≤ i ≤ n) is an atom.

The brave reasoning frontend is invoked by the -FB command line option. If the query evaluates to
true in at least one stable model, it is considered true, else it is false.

Similarly, the cautious frontend is invoked by -FC and the query is considered true if and only if it
evaluates to true in all stable models.

6 The SQL Frontend

This frontend translates a subset of SQL3 query expressions to datalog queries. Since the SQL3 standard
has not been completed yet, we resorted to the current working draft [XD97]. The system automatically
invokes the SQL frontend for input files whose names carry the extension .sql.

First of all, since there are no column names in datalog, we have to include a construct that creates
a connection between the parameters of a datalog predicate and the column names of an SQL table:

DATALOG SCHEMA { Relationname({Columnname} [, ...]) } [, ...] ;

The following grammar describes the query expressions which currently can be translated by the SQL
frontend

[ WITH [RECURSIVE]

{ Relationname [ ( { Columnname } [, ... ] ) ] AS ( QueryExpression ) }

[, ... ]

]

{ SELECT { [ (Cor-)Relationname .] Columnname } [, ... ]

FROM { Relationname [ [AS] Correlationname] } [, ... ]

[ WHERE { [ (Cor-)Relationname .] Columnname = [ (Cor-)Relationname .] Columnname }

[ AND ... ] ] ] }

[ UNION ... ] ;

where { item } [ connective ...] represents a list of items, separated by connectives. Otherwise, [
expression ] means that expression is optional. Words in capital letters are keywords. QueryExpression
refers to a construct as described above (without the trailing semicolon).

Observe that query expressions in general have two parts: A definition part (the WITH clause), and
a query part.

6.1 Example – List of Materials

Consider the canonical list of materials query:

DATALOG SCHEMA consists_of(major,minor);
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WITH RECURSIVE listofmaterials(major,minor) AS

(

SELECT c.major, c.minor FROM consists_of AS c

UNION

SELECT c1.major, c2.minor

FROM consists_of AS c1, listofmaterials AS c2

WHERE c1.minor = c2.major

)

SELECT major, minor FROM listofmaterials;

This query is translated into

listofmaterials(A, B) :- consists_of(A, B).

listofmaterials(A, B) :- consists_of(A, C), listofmaterials(C, B).

sql2dl__intern0(A, B) :- listofmaterials(A, B).

and the elements of sql2dl intern0 are printed as the result. Here the first two rules represent the
definition part and the last rule corresponds to the query part of the query expression.

(A rule and an internal predicate name for the query part have to be generated because in general
queries may consist of several parts, connected by set operators like UNION.)

7 Diagnostic Reasoning

Our frontend for abductive diagnosis ([Poo89, EGL97]) currently supports three different modes: General
diagnosis, where all diagnoses are computed, subset minimal diagnosis and single failure diagnosis. These
modes are invoked by the command line options -FD, -FDmin and -FDsingle, respectively.

The diagnostic theory obeys the syntax described in 4. Hypothesis (resp. observations) are lists of
atoms (resp. literals) separated by a dot (.) and are stored in files whose names carry the extension
.hyp (resp. .obs).

Basically, the diagnostic frontend works as follows: After all input has been read, the hypotheses are
used to generate disjunctive rules that guess all possible diagnosis candidates, while the observations be-
come contraints that forbid the generation of diagnoses that are not consistent with the observations. In
the case of subset minimal diagnosis some rules guaranteeing minimality are added. Finally the ground-
ing (and subsequently the MG etc.) are invoked and for each stable model found, the corresponding set
of hypotheses is output.

7.1 Example – Diagnosis of a Network

On the computer network depicted below, we make the observation that, sitting at machine a which is
online, we cannot reach machine e. Which machines are offline?

a

b

c d

e

f
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This can be easily modelled as the following diagnostic problem, where the theory is

reaches(X,X) :- node(X), not offline(X).

reaches(X,Z) :- reaches(X,Y), connected(Y,Z), not offline(Z).

and the hypotheses and observations are

offline(a). offline(b). offline(c). offline(d). offline(e). offline(f).

respectively

not offline(a). not reaches(a,e).

8 Outlook and Further Work

We plan to develop further frontends for experimenting with semantics and applications of nonmonotonic
reasoning. Moreover we will also continue to improve the overall efficiency of the system.

For the SQL frontend, we are currently implementing more of the language features of query expres-
sions as defined in [XD97], in particular set operators EXCEPT and INTERSECT and explicit joins
as well as additional comparison predicates like IN, < and >. (To support the latter, we will also add
arithmetic built-in predicates to our language.)
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[ST94] D. Seipel and H. Thöne. DisLog – A System for Reasoning in Disjunctive Deductive Databases.
In Proceedings International Workshop on the Deductive Approach to Information Systems and
Databases (DAISD’94), 1994.

[XD97] ANSI X3H2 and ISO DBL. (ISO-ANSI Working Draft) Foundation
(SQL/Foundation) [ISO DBL:LGW-008 / ANSI X3H2-97-030], April 1997. Temporarily available at
ftp://jerry.ece.umassd.edu/isowg3/dbl/BASEdocs/public/sqlfound.txt.

8


